NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump.

Biochemistry

Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland.

Published: May 1996

The Na+-activated NADH:ubiquinone oxidoreductase of Vibrio alginolyticus was extracted from the membranes with lauryldimethylamine-N-oxide and purified by two successive anion exchange columns. This preparation, yielding four major and several minor stained bands after SDS-PAGE, retained the NADH-dehydrogenase activity (with menadione as an artificial electron acceptor) and ubiquinone-1 (Q) reductase activity. On further fractionation of the enzyme, the Q-reductase activity essentially disappeared. Chemical analyses revealed the presence of FAD but not FMN, of non-heme iron and of acid-labile sulfur and tightly-bound ubiquinone-8 in the purified Q-reductase preparation. The participation of an iron-sulfur cluster of the [2Fe-2S] type in the electron translocation was demonstrated by the appearance of a typical EPR signal for this prosthetic group after the reduction of Q-reductase with NADH. A strong EPR signal typical for a radical observed upon reduction of the enzyme might arise from the formation of quinone radicals. In the absence of Na+, the path of the electrons apparently ends with the reduction of ubiquinone-1 to the semiquinone derivative which in the presence of O2 becomes reoxidized with concomitant formation of superoxide radicals. In the presence of Na+, these oxygen radicals are not formed and the semiquinone is further reduced to the quinol derivative. These results indicate that the Na+-dependent step in the electron transfer catalyzed by NADH:ubiquinone oxidoreductase is the reduction of ubisemiquinone to ubiquinol. After reconstitution of the purified Q-reductase into proteoliposomes, NADH oxidation by ubiquinone-1 was coupled to Na+ transport with an apparent stoichiometry of 0.5 Na+ per NADH oxidized. The transport was stimulated by valinomycin (+ K+) or by the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The transport of Na+ is therefore a primary event and does not involve the intermediate formation of a proton gradient.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi953032lDOI Listing

Publication Analysis

Top Keywords

nadhubiquinone oxidoreductase
12
oxidoreductase vibrio
8
vibrio alginolyticus
8
purified q-reductase
8
epr signal
8
na+
6
alginolyticus purification
4
purification properties
4
properties reconstitution
4
reconstitution na+
4

Similar Publications

Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress.

View Article and Find Full Text PDF

Background: Legless lizards, the slow worms of the genus are forming secondary contact zones within their Europe-wide distribution.

Methods: We examined 35 populations of and to identify the level of morphological and genetic divergence in Poland. We applied a conventional study approach using metric, meristic, and categorial (coloration) features for a phenotype analysis, and two standard molecular markers, a mitochondrial (NADH-ubiquinone oxidoreductase chain 2; ) and a nuclear (V(D)J recombination-activating protein 1; ) one.

View Article and Find Full Text PDF

Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force () across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required.

View Article and Find Full Text PDF

Little is understood about the roles of mitochondria in pregnancy-related adaptations. Therefore, we evaluated associations of maternal early-to-mid pregnancy mitochondrial DNA copy number (mtDNAcn) and mtDNA methylation with birth size and gestational length. Michigan women ( = 396) provided venous bloodspots at median 11 weeks gestation to quantify mtDNAcn marker NADH-ubiquinone oxidoreductase chain 1 () using real-time quantitative PCR and mtDNA methylation at several regions within four mitochondria-specific genes using pyrosequencing: (mitochondrially encoded tRNA phenylalanine), (D-loop promoter region, heavy strand), (cytochrome b), and (D-loop promoter region, light strand).

View Article and Find Full Text PDF

In this study, we investigated the anti-fatigue effects of black ginseng ginsenosides using exercise performance tests, serum analyses, and gene expression profiling. No significant differences in dietary intake or body weight were observed between groups. The low-dose black ginseng (LBG) group showed no significant improvements in swimming and rotating rod tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!