We review and update the work on genetic elements, e.g., viruses and plasmids (exluding IS elements and transposons) in the kingdom Crenarchaeota (Thermoproteales and Sulfolobales) and the orders Thermococcales and Thermoplasmales in the kingdom Euryarchaeota of the archael domain, including unpublished data from our laboratory. The viruses of Crenarchaeota represent four novel virus families. The Fuselloviridae represented by SSVI of S. shibatae and relatives in other Sulfolobus strains have the form of a tailed spindle. The envelope is highly hydrophobic. The DNA is double-stranded and circular. Members of this group have also been found in Methanococcus and Haloarcula. The Lipothrivciridae (e.g., T TV1 to 3) have the form of flexible filaments. They have a core containing linear double-stranded DNA and DNA-binding proteins which is wrapped into a lipid membrane. The "Bacilloviridae" (e.g., TTV4 and SIRV) are stiff rods lacking this membrane, but also featuring linear double-stranded DNA and DNA-binding proteins. Both virus types carry on both ends structures involved in the attachment to receptors. Both types are represented in Thermoproteus and Sulfolobus. The droplet-formed novel Sulfolobus virus SNDV represents the "Guttaviridae" containing circular double-stranded DNA. Though head and tail viruses distantly resembling T phages or lambdoid phages were seen electronmicroscopically in solfataric water samples, no such virus has so far been isolated. SSV1 is temperate, TTV1 causes lysis after induction, the other viruses found so far exist in carrier states. The hosts of all but TTV1 survive virus production. We discuss the implications of the nature of these viruses for understanding virus evolution. The plasmids found so far range in size from 4.5 kb to about 40 kb. Most of them occur in high copy number, probably due to the way of their detection. Most are cryptic, pNOB8 is conjugative, the widespread pDL10 alleviates in an unknown way autotrophic growth of its host Desulfurolobus by sulfur reduction. The plasmid pTIK4 appears to encode a killer function. pNOB8 has been used as a vector for the transfer of the lac S (beta-galactosidase) gene into a mutant of S. solfataricus.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6976.1996.tb00239.xDOI Listing

Publication Analysis

Top Keywords

double-stranded dna
12
viruses plasmids
8
genetic elements
8
linear double-stranded
8
dna dna-binding
8
dna-binding proteins
8
viruses
6
virus
6
plasmids genetic
4
elements thermophilic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!