Background: Hyperglycemia associated with diabetes mellitus will exacerbate neurologic injury after global brain ischemia. Studies in a rat model of forebrain ischemia (bilateral carotid occlusion plus hypotension for 10 min) discovered that acute restoration of normoglycemia in diabetics, using an insulin infusion, resulted in a neurologic outcome that was similar to normoglycemic rats without diabetes. The current study evaluated cerebral glucose, glycogen, lactate, and high-energy phosphate concentrations to identify metabolic correlates that might account for an alteration in postischemic outcome.
Methods: Fifty-four pentobarbital-anesthetized Sprague-Dawley rats were assigned to three groups: chronically hyperglycemic diabetic rats (D; N = 18); insulin-treated, acutely normoglycemic diabetic rats (ID; N = 18); and nondiabetic rats (ND; N = 18). These groups were further divided into groups of six rats each that received either no ischemia, forebrain ischemia of 10 min duration without reperfusion, or ischemia plus 15 min of reperfusion. Brains were excised after in situ freezing, and metabolites were measured using enzymatic fluorometric techniques.
Results: Before ischemia, D rats had greater concentrations of brain glucose (12.18 +/- 2.67 micromol/g) than did either ID (5.10 +/- 1.33) or ND (3.20 +/- 0.27) rats (P < 0.05). Preischemic brain glycogen was similar in all groups. At the completion of ischemia, brain lactate concentrations in D were 86% greater than in ID and 61% greater than in ND (P < 0.05), reflecting a higher intraischemic consumption of glucose plus glycogen in D (P < 0.05). High-energy phosphate concentrations, as assessed by the energy charge of the adenylate pool, were better preserved in D (energy charge = 0.60 +/- 0.28) than in either ID (0.29 +/- 0.09) or ND (0.36 +/- 0.07; P < 0.05) rats. After 15 min of reperfusion, the energy charge returned to preischemic values (i.e., 0.91-0.92) in all groups.
Conclusions: These studies demonstrated greater intraischemic carbohydrate consumption and lactate production in D than in ID or ND rats. Under these conditions, intraischemic-but not postischemic-energy status was better in D rats. Acute insulin therapy in ID rats resulted in a metabolic profile that was similar to that of ND rats. These results suggest that, in this model, primary energy failure during ischemia is not the origin of greater injury in hyperglycemic diabetics, nor is energy enhancement the origin of improved outcome after acute insulin treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000542-199604000-00020 | DOI Listing |
ACS Chem Neurosci
January 2025
Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China.
Patients with spinal cord injury (SCI) may develop depression, which can affect their rehabilitation. However, the underlying mechanism of depression in SCI patients remains unclear. Previous studies have revealed increased p38 MAPK phosphorylation in the rat hippocampus after SCI, accompanied by depression-like behaviors.
View Article and Find Full Text PDFPharmacol Res Perspect
February 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Ventricular arrhythmias induced by ischemia/reperfusion injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction. This study investigated the protective effects of the β2-adrenergic receptor (β2-AR) agonist clenbuterol against ischemia/reperfusion-induced arrhythmias and the underlying mechanism. Anesthetized rats were subjected to 10-min left coronary artery occlusion and 10-min reperfusion in vivo.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
Am J Physiol Heart Circ Physiol
January 2025
Department of Physiology and Biophysics, Dalhousie University, Halifax, NS.
This study investigated the sexual dimorphism in right ventricle (RV) remodeling in right heart failure susceptible Fischer CDF rats using the pulmonary artery banding (PAB) model. Echocardiography and hemodynamic measurements were performed in adult male and female Fischer CDF rats at 1- or 2-weeks post-PAB. RV systolic pressure and RV hypertrophy were significantly elevated in PAB rats compared to sham control at 1- and 2-weeks post-PAB; however, no differences were observed between male and female rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!