Background: Topotecan (TPT) is a topoisomerase I poison that exhibits antineoplastic activity. Analysis of the cytotoxic effects of combinations of TPT and other anticancer agents has been limited.

Purpose: We assessed the cytotoxic effects produced by combinations of TPT and other antineoplastic agents in experiments involving multiple human cancer cell lines of diverse histologic origins.

Methods: The cytotoxic effects of various antimetabolites (fluorouracil, methotrexate, or cytarabine), antimicrotubule agents (vincristine or paclitaxel [Taxol]), DNA alkylating agents (melphalan, bis[chloroethyl]nitrosourea [BCNU], or 4-hydroperoxycyclophosphamide [4HC]), and a DNA-platinating agent (cisplatin), alone and in combination with TPT, were measured in clonogenic (i.e., colony-forming) assays. HCT8 ileocecal adenocarcinoma, A549 non-small-cell lung carcinoma, NCI-H82ras(H) lung cancer, T98G glioblastoma, and MCF-7 breast cancer cell lines were used in these assays. The data were analyzed by the median effect method, primarily under the assumption that drug mechanisms of action were mutually nonexclusive (i.e., completely independent of one another). For each level of cytotoxicity (ranging from 5% to 95%), a drug combination index (CI) was calculated. A CI less than 1 indicated synergy (i.e., the effect of the combination was greater than that expected from the additive effects of the component agents), a CI equal to 1 indicated additivity, and a CI greater than 1 indicated antagonism (the effect of the combination was less than that expected from the additive effects of the component agents).

Results: When the mechanisms of drug action were assumed to be mutually nonexclusive, virtually all CIs for combinations of TPT and either antimetabolites or antimicrotubule agents revealed cytotoxic effects that were less than additive. The CIs calculated at low-to-intermediate levels of cytotoxicity for combinations of TPT and the DNA alkylating agents melphalan, BCNU, and 4HC also showed drug effects that were less than additive; in most cases, however, nearly additive or even synergistic effects were observed with these same drug combinations at high levels of cytotoxicity (i.e., at > or = 90% inhibition of colony formation). Results obtained with combinations of TPT and cisplatin varied according to the cell line examined. With A549 cells, less than additive effects were seen at low-to-intermediate levels of cytotoxicity, and more than additive effects were seen at high levels of cytotoxicity. With NCI-H82ras(H) cells, synergy was observed over most of the cytotoxicity range.

Conclusions And Implications: TPT cytotoxicity appears to be enhanced more by combination with certain DNA-damaging agents than by combination with antimetabolites or antimicrotubule agents. Interactions between TPT and other drugs can vary depending on the cell type examined. Further investigation is required to determine the basis of the observed effects and to determine whether these in vitro findings are predictive of results obtained in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/88.11.734DOI Listing

Publication Analysis

Top Keywords

cytotoxic effects
20
combinations tpt
20
additive effects
16
levels cytotoxicity
16
cancer cell
12
cell lines
12
antimicrotubule agents
12
effects
11
agents
10
tpt
9

Similar Publications

Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.

View Article and Find Full Text PDF

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

In vitro cytotoxicity (irritant potency) of toothpaste ingredients.

PLoS One

January 2025

Department of Dental Materials Science, Academic Center for Dentistry (ACTA), University of Amsterdam, Amsterdam, The Netherlands.

Purpose: This study aimed to determine the cytotoxicity (irritant potency) of toothpaste ingredients, of which some had known to have sensitizing properties.

Materials: From the wide variety of toothpaste ingredients, Xylitol, Propylene glycol (PEG), Sodium metaphosphate (SMP), Lemon, Peppermint, Fluoride, Cinnamon, and Triclosan and Sodium dodecyl sulphate (SDS) have been selected for evaluation of their cytotoxic properties.

Methods: Reconstructed human gingiva (RHG) were topically exposed to toothpaste ingredients at different concentrations.

View Article and Find Full Text PDF

Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.

View Article and Find Full Text PDF

The suppression of tyrosinase (TYR), a key enzyme in melanogenesis, has been suggested as an effective strategy for preventing melanin accumulation. We previously discovered the novel chrysin derivative hydroxyethyl chrysin (HE-chrysin) through an irradiation technique, which exerted higher anti-inflammatory and anti-cancer activities than original chrysin. In the present study, we explored whether HE-chrysin has antioxidant and anti-melanogenic capacity using B16F10 murine melanoma cells and molecular docking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!