The concentration of high density lipoproteins (HDL) is inversely related to the risk of atherosclerosis. The two major protein components of HDL are apolipoprotein (apo) A-I and apoA-II. To study the role of apoA-II in lipoprotein metabolism and atherosclerosis, we have developed three lines of C57BL/6 transgenic mice expressing human apoA-II (lines 25.3, 21.5, and 11.1). Northern blot experiments showed that human apoA-II mRNA was present only in the liver of transgenic mice. SDS-polyacrylamide gel electrophoresis and Western blot analysis demonstrated a 17.4-kDa human apoA-II in the HDL fraction of the plasma of transgenic mice. After 3 months on a regular chow, the plasma concentrations of human apoA-II were 21 +/- 4 mg/dl in the 25.3 line, 51 +/- 6 mg/dl in the 21.5 line, and 74 +/- 4 mg/dl in the 11.1 line. The concentration of cholesterol in plasma was significantly lower in transgenic mice than in control mice because of a decrease in HDL cholesterol that was greatest in the line that expressed the most apoA-II (23 mg/dl in the 11.1 line versus 63 mg/dl in control mice). There was also a reduction in the plasma concentration of mouse apoA-I (32 +/- 2, 56 +/- 9, 91 +/- 7, and 111 +/- 2 mg/dl for lines 11.1, 21.5, 25.3, and control mice, respectively) that was inversely correlated with the amount of human apoA-II expressed. Additional changes in plasma lipid/lipoprotein profile noted in line 11.1 that expressed the highest level of human apoA-II include elevated triglyceride, increased proportion of total plasma, and HDL free cholesterol and a marked (>10-fold) reduction in mouse apoA-II. Total endogenous plasma lecithin:cholesterol acyltransferase (LCAT) activity was reduced to a level directly correlated with the degree of increased plasma human apoA-II in the transgenic lines. LCAT activity toward exogenous substrate was, however, only slightly decreased. The biochemical changes in the 11.1 line, which is markedly deficient in plasma apoA-I, an activator for LCAT, are reminiscent of those in patients with partial LCAT deficiency. Feeding the transgenic mice a high fat, high cholesterol diet maintained the mouse apoA-I concentration at a normal level (69 +/- 14 mg/dl in line 11.1 compared with 71 +/- 6 mg/dl in nontransgenic controls) and prevented the appearance of HDL deficiency. All this happened in the presence of a persistently high plasma human apoA-II (96 +/- 14 mg/dl). Paradoxical HDL elevation by high fat diets has been observed in humans and is reproduced in human apoA-II overexpressing transgenic mice but not in control mice. Finally, HDL size and morphology varied substantially in the three transgenic lines, indicating the importance of apoA-II concentration in the modulation of HDL formation. The LCAT and HDL deficiencies observed in this study indicate that apoA-II plays a dynamic role in the regulation of plasma HDL metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.271.12.6720 | DOI Listing |
Int J Mol Sci
October 2024
Department of Basic Medical Science, College of Medicine, Qatar University, QU Health, Doha 2713, Qatar.
Identifying biomarkers for Alzheimer's disease (AD) is crucial, due to its complex pathology, which involves dysfunction in lipid transport, contributing to neuroinflammation, synaptic loss, and impaired amyloid-β clearance. Nuclear magnetic resonance (NMR) is able to quantify and stratify lipoproteins. The study investigated lipoproteins in blood from AD patients, aiming to evaluate their diagnostic potential.
View Article and Find Full Text PDFJ Lipid Res
December 2024
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Neurology, Oregon Health and Science University, Portland, OR, USA. Electronic address:
The ability of high-density lipoprotein (HDL) to promote cellular cholesterol efflux is a more robust predictor of cardiovascular disease protection than HDL-cholesterol levels in plasma. Previously, we found that lipidated HDL containing both apolipoprotein A-I (APOA1) and A-II (APOA2) promotes cholesterol efflux via the ATP-binding cassette transporter (ABCA1). In the current study, we directly added purified, lipid-free APOA2 to human plasma and found a dose-dependent increase in whole plasma cholesterol efflux capacity.
View Article and Find Full Text PDFCirculation
November 2024
Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Universität des Saarlandes, Homburg, Germany (D.V., L.L., M.B., F.M.).
Biosci Rep
October 2024
School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom.
Given the failure of high-density lipoprotein (HDL) raising therapies to reduce cardiovascular disease risk, attention has turned towards HDL composition and vascular protective functions. In individuals with insulin resistance, exercise interventions recover HDL function. However, the effect of exercise on HDL in otherwise healthy individuals is unknown.
View Article and Find Full Text PDFAtherosclerosis
October 2024
Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
Background And Aims: The structure-function relationships of high-density lipoprotein (HDL) subpopulations are not well understood. Our aim was to examine the interrelationships between HDL particle proteome and HDL functionality in subjects with and without coronary heart disease (CHD).
Methods: We isolated 5 different HDL subpopulations based on charge, size, and apolipoprotein A1 (APOA1) content from the plasma of 33 overweight/obese CHD patients and 33 age-and body mass index (BMI)-matched CHD-free subjects.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!