Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A role for cGMP in the control of capacitative Ca2+ influx was identified in rat pituitary GH3 cells. Application of 50 microM - 1 mM of the non-specific phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), or the specific cGMP-phosphodiesterase inhibitor, zaprinast, induced a dose-dependent increase in the intracellular free Ca2+ concentration [Ca2+]i of the pituitary cell line, as assessed by video ratio imaging using fura-2. Response onset times were identical and response profiles were similar in all cells analysed. Application of 50 microM dibutyryl cGMP to GH3 cells resulted in heterogeneous Ca2+ responses, consisting of single or multiple transients with varying onset times. In all cases, increases in [Ca2+]i were predominantly due to Ca2+ influx, since no responses were detected in low Ca2+ medium, or following pre-incubation of cells with 1 microM verapamil, or nicardipine. Depleting intracellular Ca2+ stores by prior treatment of cells with 1 microM thapsigargin resulted in a dramatic potentiation in the Ca2+ influx mediated by both phosphodiesterase inhibitors and dibutyryl cGMP, suggesting that cGMP modulates a dihydropyridine-sensitive Ca2+ entry mechanism in GH3 cells which is possibly regulated by the state of filling of Ca2+ stores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-5793(96)00413-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!