Diazepam-binding inhibitor (DBI)/acyl-CoA-binding protein (ACBP) is a highly conserved 10-kD polypeptide expressed in various organs and implicated in the regulation of multiple biological processes such as GABAA/benzodiazepine receptor modulation, acyl-CoA metabolism, steroidogenesis, and insulin secretion. To extend our knowledge about the biology of DBI/ACBP and to elucidate the molecular mechanisms responsible for regulating DBI/ACBP gene expression, we have studied the androgen-regulated expression of DBI/ACBP transcripts in the human prostatic adenocarcinoma cell line LNCaP and have cloned and characterized a human gene encoding DBI/ACBP. Northern blotting, reverse transcription-assisted polymerase chain reaction (RT-PCR), ribonuclease protection, and 5' RACE analysis (rapid amplification of cDNA ends) of DBI/ACBP transcripts in LNCaP cells revealed androgen-regulated expression of multiple transcripts originating from multiple transcription start sites and alternative processing. The most abundant type of transcripts (referred to as type 1 transcripts) encodes genuine DBI/ACBP of 86 amino acids, while the minor type (type 2 transcripts) harbors an insertion of 86 bases and might encode an unrelated protein of 67 amino acids. Examination of a cloned DBI/ACBP gene revealed a structural organization of four exons present in all transcripts and one alternatively used exon present only in type 2 transcripts. The promoter region is located in a CpG island and lacks a canonical TATA box. Transient transfection of DBI/ACBP promoter fragments into LNCaP cells demonstrated that a region of 1.1 kb upstream of the translation start site is able to drive high-level expression of luciferase in LNCaP cells in an androgen-regulated fashion. Taken together these data indicate that the isolated human gene encoding DBI/ACBP is functional, has a high degree of structural similarity with the corresponding rat gene, exhibits hallmarks of a typical housekeeping gene, and harbors cis-acting elements that are at least partially responsible for androgen-regulated transcription in LNCaP cells.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.1996.15.197DOI Listing

Publication Analysis

Top Keywords

lncap cells
16
type transcripts
16
human gene
12
gene encoding
12
dbi/acbp
9
human prostatic
8
prostatic adenocarcinoma
8
adenocarcinoma cell
8
cell lncap
8
dbi/acbp gene
8

Similar Publications

The Pro-Migratory and Pro-Invasive Roles of Cancer-Associated Fibroblasts Secreted IL-17A in Prostate Cancer.

J Biochem Mol Toxicol

February 2025

Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Cancer-associated fibroblasts (CAFs) are key stroma cells that play dominant roles in the migration and invasion of several types of cancer through the secretion of inflammatory cytokine IL-17A. This study aims to identify the potential role and regulatory mechanism of CAFs-secreted IL-17A in the migration and invasion of prostate cancer (PC). CAFs and normal fibroblasts (NFs) were obtained from fresh PC and its adjacent normal tissues, respectively.

View Article and Find Full Text PDF

Lactoferrin conjugated radicicol nanoparticles enhanced drug delivery and cytotoxicity in prostate cancer cells.

Eur J Pharmacol

January 2025

School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address:

Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells.

View Article and Find Full Text PDF

Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.

View Article and Find Full Text PDF

Antiandrogen therapies are effectively used to treat advanced prostate cancer, but eventually cancer adaptation drives unresolved metastatic castration-resistant prostate cancer (mCRPC). Adipose tissue influences metabolic reprogramming in cancer and was proposed as a contributor to therapy resistance. Using extracellular matrix (ECM)-mimicking hydrogel coculture models of human adipocytes and prostate cancer cells, we show that adipocytes from subcutaneous or bone marrow fat have dissimilar responses under the antiandrogen Enzalutamide.

View Article and Find Full Text PDF

PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors.

J Control Release

January 2025

Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain. Electronic address:

In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!