Most genotoxic DNA base modifications localized at key genomic sequences constitute the molecular alterations crucial or mutagenesis and tumorigenesis. We have utilized lesion-rendered inhibition of restriction endonuclease cleavage for the analysis of site-specific DNA damage induced by (+/-)-7,8-dihydroxy-anti-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (benzo[a]pyrene diol epoxide, anti-BPDE) in human genes. The H-ras protooncogene and insulin gene sequences were used as targets for modification in vitro and in vivo. Selective induction of individual facultative bands, resulting from covalent modification of the cognate recognition sites, was observed in modified plasmid DNA for a number of restriction nucleases. The ras gene-specific damage, at the PstI, BstYI, NotI and BstEII recognition sites, was visualized and quantitated in human genomic DNA adducted by anti-BPDE. Repair of lesions at hexanucleotide sequences and/or regions surrounding the restriction site, was assessed as a gradual disappearance of facultative bands in DNA from repair-proficient human fibroblasts exposed to the carcinogen in confluent culture. Efficiency of the PstI site-specific repair was compared at low and high levels of initial damage. Higher genotoxic dose caused a decrease in the extent of adduct removal from the bulk DNA, while the specific site of the ras gene was still subject to fast repair. No measurable PstI site-specific repair was detected in the insulin gene. These results show the region-selective induction of bulky anti-BPDE DNA damage in non-related genomic targets and suggest that repair of these lesions in human cells proceeds with the efficiency tightly controlled at different levels of initial genotoxic load.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0921-8777(95)00059-3 | DOI Listing |
Sci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.
View Article and Find Full Text PDFNature
January 2025
Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada.
Anal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China. Electronic address:
Grainyhead-like protein 3 homolog (GRHL3) has been identified as a top transcription factor associated with keratinization in lung squamous cell carcinoma (LUSC). We designed this study to elucidate the function of GRHL3 in radioresistance in LUSC and the mechanism involved. Transcriptome differences between radioresistant and parental cells were analyzed to identify the hub transcription factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!