Bacteriophage PRD1, which infects Escherichia coli and Salmonella typhimurium, consists of an icosahedral capsid enclosing a membrane-packaged double-stranded DNA genome. The viral shell has been investigated using time and temperature resolved Raman and ultraviolet-resonance Raman spectroscopy to reveal novel features of the capsid structure and its pathway of assembly from P3 subunits. Raman spectra show that the shell is thermostable to 50 degrees C, and disassembles between 50 and 70 C degrees with only a small change in P3 conformation. However, the products of thermal disassembly depend sensitively upon total protein concentration. Characterization by analytical ultracentrifugation indicates that below 8 mg/ml, the purified shell disassembles primarily into P3 trimers; at higher concentrations, larger multimers of P3 are formed. Guanidine hydrochloride (GuHCl) dissociation of the P3 shell yields similar results. Purified P3 trimers, isolated either by heat or GuHCl treatment, exhibit structure sensitivity between 30 and 50 degrees C. Thus, shell disassembly diminishes P3 thermostability. Both the lower temperature transition (30 degrees C to 50 degrees C) of the trimer and the higher temperature transition (50 degrees C to 70 degrees C) of the shell involve a conversion of approximately 5% of the P3 peptide backbone from alpha-helix to beta-strand. Deuterium exchange of the P3 peptide backbone reveals more rapid exchange in the shell than in the trimer, consistent with the observed non-specific polymerization of trimers at high concentration. Conversely, the exchange of indole 1NH groups shows that approximately 65% of tryptophan residues are protected against exchange in the assembled shell. The results suggest a mechanism for shell assembly in which the specific association of trimers into the correct shell architecture involves stabilization of a subunit alpha-helical domain and sequestering of selected side-chains from solvent access. We propose a capsid assembly model which couples P3 shell formation with the final step in folding of the P3 subunit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1996.0149 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.
View Article and Find Full Text PDFACS Nano
January 2025
Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Science Education and Research Thiruvananthapuram, Chemistry, Trivandrum, Trivandrum, Trivandrum, 695551, Trivandrum, INDIA.
Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!