31P-NMR spectra of NADPH and NADPH bound to Lactobacillus casei dihydrofolate reductase have been recorded using the techniques of cross-polarization, magic-angle spinning and high-power proton-decoupling on both lyophilized and hydrated samples. Previous studies on the lyophilized complex of L. casei dihydrofolate reductase with NADPH and methotrexate, measuring the isotropic shifts and principal components of the chemical shift tensors, have shown that the 2'-phosphate group of bound NADPH exists as a mixture of the dianionic and monoanionic states [Gerothanassis, I. P, Barrie, P. J., Birdsall, B. & Feeney, J. (1994) Eur J. Biochem. 226, 211-218]. In the present study on hydrated samples, the characterization of the isotropic shift and chemical shift tensors of the 2'-phosphate signal indicates that the 2'-phosphate is almost exclusively in the dianionic state. This is in agreement with earlier 31P-NMR studies in solution [Feeney, J., Birdsall, B., Roberts, G. C. K. & Burgen, A. S. V. (1975) Nature 257, 564-566]. In experiments examining progressively hydrated (6%, 12%, 15%, by mass) samples, the observed signals become increasingly narrower probably because the microenvironments of the 31P nuclei become more homogeneous upon sample hydration. Chemical exchange between mobile water molecules and bound protons close to individual sites on NADPH has been indirectly monitored on a hydrated sample (15% water, by mass) using a pulse sequence proposed by Harbison and coworkers [Harbison, G. S., Roberts, J. E., Herzfeld, J. & Griffin, R. G. (1988) J. Am. Chem. Soc. 110, 7221-7223]. In this experiment, the two diphosphate signals are totally suppressed while the 2'-phosphate phosphorus signal remains: this indicates a significant polarization of the 2'-phosphate nuclei from protons in exchange with those of mobile water molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1996.00262.x | DOI Listing |
Neuromolecular Med
August 2024
Birla Institute of Scientific Research, Jaipur, Rajasthan, 302020, India.
Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches.
View Article and Find Full Text PDFBiochemistry
May 2011
Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K.
In order to examine the origins of the large positive cooperativity (ΔG(0)(coop) = -2.9 kcal mol(-1)) of trimethoprim (TMP) binding to a bacterial dihydrofolate reductase (DHFR) in the presence of NADPH, we have determined and compared NMR solution structures of L. casei apo DHFR and its binary and ternary complexes with TMP and NADPH and made complementary thermodynamic measurements.
View Article and Find Full Text PDFProteins
November 2008
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA.
Accurate ranking during in silico lead optimization is critical to drive the generation of new ligands with higher affinity, yet it is especially difficult because of the subtle changes between analogs. In order to assess the role of the structure of the receptor in delivering accurate lead ranking results, we docked a set of forty related inhibitors to structures of one species of dihydrofolate reductase (DHFR) derived from crystallographic, NMR solution data, and homology models. In this study, the crystal structures yielded the superior results: the compounds were placed in the active site in the conserved orientation and the docking scores for 80% percent of the compounds clustered into the same bins as the measured affinity.
View Article and Find Full Text PDFBiochemistry
February 2008
Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E.
View Article and Find Full Text PDFJ Med Chem
July 2007
Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, USA.
Two boron-containing, ortho-icosahedral carborane lipophilic antifolates were synthesized, and the crystal structures of their ternary complexes with human dihydrofolate reductase (DHFR) and dihydronicotinamide adenine dinucleotide phosphate were determined. The compounds were screened for activity against DHFR from six sources (human, rat liver, Pneumocystis carinii, Toxoplasma gondii, Mycobacterium avium, and Lactobacillus casei) and showed good to modest activity against these enzymes. The compounds were also tested for antibacterial activity against L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!