Growth factor receptors in human hematopoietic progenitor cells have become the focus of intense interest, because they may provide tools for the monitoring, enrichment, and expansion of stem cells. We have shown earlier that the Tie receptor tyrosine kinase is expressed in erythroid and megakaryoblastic human leukemia cell lines, in the blood islands of the yolk sac, and in endothelial cells starting from day 8.0 of mouse development. Here, the expression of Tie was studied in human hematopoietic cells of various sources. Peripheral blood mononuclear cells were Tie-. However, a large fraction of CD34+ cells from umbilical cord blood (UCB) and bone marrow (BM) expressed tie protein and mRNA. On average, 64% of the fluorescence-activated cell sorting-gated UCB CD34+ cells including CD38- cells and a fraction of cells expressing low levels of c-Kit were Tie+. Also, 30% to 60% of BM CD34+ cells were Tie+, including most of the BM CD34+CD38-, CD34+Thy-1+, and CD34+HLA-DR- cells. Under culture conditions allowing myeloid, erythroid, and/or megakaryocytic differentiation, purified UCB CD34+ cells lost Tie mRNA and protein expression concomitantly with that of CD34; however, a significant fraction of cells expressed Tie during megakaryocytic differentiation. These data suggest that, in humans, the Tie receptor and presumably its ligand may function at an early stage of hematopoietic cell differentiation.
Download full-text PDF |
Source |
---|
J Exp Med
March 2025
Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.
View Article and Find Full Text PDFTransfus Apher Sci
January 2025
Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Background: Neuroblastoma (NB) is the most common extracranial solid tumor in pediatric. In highrisk NB patients, the 5-year overall survival rate (OS) remains a stark < 50 % with conventional therapies. Autologous hematopoietic stem cell transplantation with high dose chemotherapies was used in poor prognosis and high-risk patients.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
The Innate Lymphoid Cells (ILCs) are a family of innate immune cells composed by the Natural Killer (NK) cells and the helper ILCs (hILCs) (ILC1, ILC2, ILC3), both developing from a common ILC precursor (ILCP) derived from hematopoietic stem cells (HSCs). A correct ILC reconstitution is crucial, particularly in patients receiving HSC transplantation (HSCT), the only therapeutic option for many adult and pediatric high-risk hematological malignancies. Indeed, mainly thanks to their cytotoxic activity, NK cells have a strong Graft-versus-Leukemia (GvL) effect.
View Article and Find Full Text PDFInt J Surg Case Rep
January 2025
Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250025, China. Electronic address:
Introduction And Importance: Retiform hemangioendothelioma(RH) is a rare vascular tumor affecting patients over a wide age range without a gender predilection; only about 50 cases have been described so far.
Case Presentation: We report a case of submandibular retiform hemangioendothelioma in a 58-year-old woman who had been diagnosed with RH 20 years ago and had experienced recurrence four times during the past 20 years. This will increase the limited number of such cases in the hope of gaining a better understanding of this rare type of tumor.
Adv Ther (Weinh)
January 2025
Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA.
Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!