Purpose: To evaluate the current and future interventions in age-related macular degeneration (AMD), it is essential to delineate the early clinical features associated with later visual loss. The authors describe the retinal pigment epithelium (RPE)/Bruch membrane region in ten patients with advance exudative AMD using current angiographic techniques and a noninvasive method: infrared (IR) imaging with the scanning laser ophthalmoscope.
Methods: Ten patients with exudative AMD, evidence by choroidal neovascularization (CNV), fibrovascular scar formation, pigment epithelial detachment, or serous subretinal fluid,were examined using IR imaging, fluorescein angiography, indocyanine green angiography, and stereoscopic viewing of fundus slides. The authors determined the number and size of drusen and subretinal deposits and the topographic character of the RPE/Bruch membrane area and of CNV.
Results: In all patients, IR imaging yielded the greatest number of drusen and subretinal deposits. Sheets of subretinal material, but few lesions consistent with soft drusen, were seen. Infrared imaging provided topographic information of evolving CNV. Choroidal neovascularization appeared as a complex with a dark central core, an enveloping reflective structure which created a halo-like appearance in the plane of focus, and outer retinal/subretinal striae.
Conclusions: Infrared imaging provides a noninvasive, in vivo method to image early changes in the RPE/Bruch membrane. It offers advantages over current imaging techniques by minimizing light scatter through cloudy media and enhancing the ability to image through small pupils, retinal hyperpigmentation, blood, heavy exudation, or subretinal fluid. It provides additional information regarding early CNV, and the character of drusen and subretinal deposits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0161-6420(96)30731-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!