The initial stages of chloroplast protein import involve the binding of precursor proteins to surface-bound receptors prior to translocation across the envelope membranes in a partially folded conformation. We have analyzed the unfolding process by examining the conformation of a construct, comprising the presequence of a chloroplast protein linked to ricin A chain, before and after binding to the chloroplast surface. We show that the presequence is highly susceptible to proteolysis in solution, probably reflecting a lack of tertiary structure, whereas the A chain passenger protein is resistant to extremely high concentrations of protease, unless deliberately unfolded using denaturant. The A chain moiety is furthermore active, indicating that the presence of the presequence does not prevent formation of a tightly folded, native state. In contrast, receptor-bound p33KRA (fusion protein comprising the 33-kDa presequence plus 22 residues of mature protein, linked to the A chain of ricin) is quantitatively digested by protease concentrations that have little effect on the A chain in solution. We conclude that protein unfolding can take place on the chloroplast surface in the absence of translocation and without the aid of soluble factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.271.8.4082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!