AI Article Synopsis

Article Abstract

Tyrosine kinase activity, a determinant of Src homology domain interactions, has a prominent effect on cellular localization and catalysis by 5-lipoxygenase. Six separate inhibitors of tyrosine kinase each inhibited 5(S)-hydroxyeicosatetraenoic acid formation by HL-60 cells stimulated with calcium ionophore, in the presence or absence of exogenous arachidonic acid substrate, indicating that they modulated cellular 5-lipoxygenase activity. The tyrosine kinase inhibitors also blocked the translocation of 5-lipoxygenase from cytosol to membranes during cellular activation, consistent with their effects on its catalytic activity. These results fit a model which postulates that Src homology domain interactions are a molecular determinant of the processes which coordinate the subcellular localization and functions of 5-lipoxygenase. In addition, we demonstrate that activated leukocytes contain two molecularly distinct forms of 5-lipoxygenase: a phosphorylated form and a nonphosphorylated form. In activated HL-60 cells the pool of phosphorylated 5-lipoxygenase accumulates in the nuclear fraction, not with the membrane or cytosolic fractions. The amount of phosphorylated 5-lipoxygenase is a small fraction of the total. Overall, equilibrium reactions involving the nuclear localizing sequence, the proline-rich SH3 binding motif, and the phosphorylation state of 5-lipoxygenase may each influence its partnership with other cellular proteins and any novel functions derived from such partnerships.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.271.11.6179DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
16
5-lipoxygenase
9
kinase activity
8
cellular 5-lipoxygenase
8
src homology
8
homology domain
8
domain interactions
8
hl-60 cells
8
phosphorylated 5-lipoxygenase
8
cellular
5

Similar Publications

Objective: To analyse at our Institution the criteria for selecting a first-line therapy for patients with an advanced radioiodine-refractory thyroid cancer, their clinical responses, safety and survival outcomes.

Patients And Methods: We extracted data from 69 consecutive patients referred from September 2016 to September 2024 at Federico II University Hospital, among whom 44 patients were treated with TKIs as first line treatment and outside any clinical trial, and form the basis of this report.

Results: Thirty-one (71%) patients were treated with the antiangiogenesis inhibitor lenvatinib and 13 (29%) with selective tyrosine kinase inhibitors (s-TKIs).

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.

View Article and Find Full Text PDF

BCL6 coordinates muscle mass homeostasis with nutritional states.

Proc Natl Acad Sci U S A

January 2025

Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037-1002.

Nutritional status is a determining factor for growth during development and homeostatic maintenance in adulthood. In the context of muscle, growth hormone (GH) coordinates growth with nutritional status; however, the detailed mechanisms remain to be fully elucidated. Here, we show that the transcriptional repressor B cell lymphoma 6 (BCL6) maintains muscle mass by sustaining GH action.

View Article and Find Full Text PDF

Design, Synthesis, and SAR of Covalent KIT and PDGFRA Inhibitors─Exploring Their Potential in Targeting GIST.

J Med Chem

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany.

Gastrointestinal stromal tumors (GIST), driven by KIT and PDGFRA mutations, are the most common mesenchymal tumors of the gastrointestinal tract. Although tyrosine kinase inhibitors (TKIs) have advanced treatment, resistance mutations and off-target toxicity limit their efficacy. This study develops covalent TKIs targeting drug-resistant GIST through structure-based design, synthesis, and biological evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!