Translatable immunoglobulin germ-line transcript.

Eur J Immunol

Department of Microbiology and Immunology, University of California, San Francisco 94143-0670, USA.

Published: April 1996

During B cell differentiation, the functional genes encoding immunoglobulin (Ig) heavy (H) and light (L) chains are generated by two rearrangement processes--VDJ rearrangement generates the exon encoding the Ig variable (V) regions, and the class switch reconstructs a rearranged IgH gene by exchanging the segment encoding the constant (C) region, which determines the Ig class. Both types of rearrangement are preceded by transcripts originating from a transcriptional start site 5' of the I exon, which is then spliced to the C exons. These germ-line transcripts, which are thought to be necessary for the initiation of both types of rearrangement, are said to be sterile. We demonstrate here that the mu germ-line transcript is translatable into a polypeptide chain, to which we assign the symbol psi. Thus, protein products of these transcripts might be part of or signal to the recombinases that catalyze Ig gene rearrangement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.1830260422DOI Listing

Publication Analysis

Top Keywords

germ-line transcript
8
types rearrangement
8
rearrangement
5
translatable immunoglobulin
4
immunoglobulin germ-line
4
transcript cell
4
cell differentiation
4
differentiation functional
4
functional genes
4
genes encoding
4

Similar Publications

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

The evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations.

View Article and Find Full Text PDF

Loss of Affects m6A Modification but Not Semen Characteristics in Bull Spermatozoa.

Int J Mol Sci

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.

N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.

View Article and Find Full Text PDF

Insights from the single-cell level: lineage trajectory and somatic-germline interactions during spermatogenesis in dwarf surfclam Mulinia lateralis.

BMC Genomics

January 2025

MOE Key Laboratory of Marine Genetics and Breeding, Laboratory for Marine Biology and Biotechnology (Qingdao Marine Science and Technology Center), Ocean University of China, Qingdao, China.

Background: Spermatogenesis is a complex process of cellular differentiation that commences with the division of spermatogonia stem cells, ultimately resulting in the production of functional spermatozoa. However, a substantial gap remains in our understanding of the molecular mechanisms and key driver genes that underpin this process, particularly in invertebrates. The dwarf surfclam (Mulinia lateralis) is considered an optimal bivalve model due to its relatively short generation time and ease of breeding in laboratory settings.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!