Objectives: We hypothesized that a) perfluorocarbon-associated gas exchange could be accomplished in normal large sheep; b) the determinants of gas exchange would be similar during perfluorocarbon-associated gas exchange and conventional gas ventilation; c)in large animals with lung injury, perfluorocarbon-associated gas exchange could be used to enhance gas exchange without adverse effects on hemodynamics; and d) the large animal with lung injury could be supported with an FIO2 of <1.0 during perfluorocarbon-associated gas exchange.

Design: Prospective, observational animal study and prospective randomized, controlled animal study.

Setting: An animal laboratory in a university setting.

Subjects: Thirty adult ewes.

Measurement And Main Results: Five normal ewes (61.0 +/- 4.0 kg) underwent perfluorocarbon-associated gas exchange to ascertain the effects of tidal volume, end-inspiratory pressure, and positive end-expiratory pressure (PEEP) on oxygenation. Respiratory rate, tidal volume, and minute ventilation were studied to determine their effects on CO2 clearance. Sheep, weighing 58.9 +/- 8.3 kg, had lung injury induced by instilling 2 mL/kg of 0.05 Normal hydrochloric acid into the trachea. Five minutes after injury, PEEP was increased to 10 cm H2O. Ten minutes after injury, sheep with Pao2 values of <100 torr (<13.3 kPa) were randomized to continue gas ventilation (control, n=9) or to institute perfluorocarbon-associated gas exchange (n=9) by instilling 1.6 L of unoxygenated perflubron into the trachea and resuming gas ventilation. Blood gas and hemodynamic measurements were obtained throughout the 4-hr study. Both tidal volume and end-inspiratory pressure influenced oxygenation in normal sheep during perfluorocarbon-associated gas exchange. Minute ventilation determined CO2 clearance during perfluorocarbon-associated gas exchange in normal sheep. After acid aspiration lung injury, perfluorocarbon-associated gas exchange increased PaO2 and reduced intrapulmonary shunt fraction. Hypoxia and intrapulmonary shunting were unabated after injury in control animals. Hemodynamics were not influenced by the institution of perfluorocarbon-associated gas exchange.

Conclusions: Tidal volume and end-inspiratory pressure directly influence oxygenation during perfluorocarbon-associated gas exchange in large animals. Minute ventilation influences clearance of CO2. In adult sheep with acid aspiration lung injury, perfluorocarbon-associated gas exchange at an FIO2 of <1.0 supports oxygenation and improves intrapulmonary shunting, without adverse hemodynamic effects, when compared with conventional gas ventilation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003246-199603000-00018DOI Listing

Publication Analysis

Top Keywords

gas exchange
24
perfluorocarbon-associated gas
16
large sheep
8
lung injury
8
exchange
6
gas
6
perfluorocarbon-associated
4
exchange normal
4
normal acid-injured
4
large
4

Similar Publications

Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.

View Article and Find Full Text PDF

To assess respiratory changes after neurally adjusted ventilatory assist (NAVA) initiation in preterm infants with evolving or established bronchopulmonary dysplasia (BPD). Premature infants born less than 32 weeks gestation with evolving or established BPD initiated on invasive or non-invasive (NIV) NAVA were included. Respiratory data: PCO and SpO₂/FiO₂ (S/F) ratio before and at 4, 24, 48 h post-NAVA initiation were collected.

View Article and Find Full Text PDF

Continuous Electrochemical Carbon Capture via Redox-Mediated pH Swing─Experimental Performance and Process Modeling.

J Phys Chem Lett

January 2025

Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wyb. St. Wyspiańskiego 27, 50-370 Wrocław, Poland.

We investigate a continuous electrochemical pH-swing method to capture CO from a gas phase. The electrochemical cell consists of a single cation-exchange membrane (CEM) and a recirculation of a mixture of salt and phenazine-based redox-active molecules. In the absorption compartment, this solution is saturated by CO from a mixed gas phase at high pH.

View Article and Find Full Text PDF

Hollow-core optical fiber (HCF) gas cells are an attractive option for many applications including metrology and non-linear optics due to the enhanced gas-light interaction length in a compact and lightweight format. Here, we report the first demonstration and characterization of a selectively pressurized, hermetically sealed hollow-core fiber-based gas cell, where the core is filled with a higher gas pressure than the cladding to enhance the optical performance. This differential gas pressure creates a gas-induced differential refractive index (GDRI) that is shown to enable significant modification of the HCF's optical performance.

View Article and Find Full Text PDF

Probing London Dispersion in Proton-Bound Onium Ions: Are Alkyl-Alkyl Steric Interactions Reliably Modeled?

J Am Chem Soc

January 2025

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland.

We report spectroscopic and spectrometric experiments that probe the London dispersion interaction between -butyl substituents in three series of covalently linked, protonated -pyridines in the gas phase. Molecular ions in the three test series, along with several reference molecules for control, were electrosprayed from solution into the gas phase and then probed by infrared multiphoton dissociation spectroscopy and trapped ion mobility spectrometry. The observed N-H stretching frequencies provided an experimental readout diagnostic of the ground-state geometry of each ion, which could be furthermore compared to a second, independent structural readout via the collision cross section.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!