Facilitating oligonucleotide delivery: helping antisense deliver on its promise.

Proc Natl Acad Sci U S A

Department of Pathology, University of Pennsylvania School of Medicine,Philadelphia, 19104, USA.

Published: April 1996

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC39574PMC
http://dx.doi.org/10.1073/pnas.93.8.3161DOI Listing

Publication Analysis

Top Keywords

facilitating oligonucleotide
4
oligonucleotide delivery
4
delivery helping
4
helping antisense
4
antisense deliver
4
deliver promise
4
facilitating
1
delivery
1
helping
1
antisense
1

Similar Publications

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

The Plethora of RNA-Protein Interactions Model a Basis for RNA Therapies.

Genes (Basel)

January 2025

Department of Chemistry, The RNA Institute, University at Albany, SUNY, 1400 Washington Ave Extension, Albany, NY 12222, USA.

The notion of RNA-based therapeutics has gained wide attractions in both academic and commercial institutions. RNA is a polymer of nucleic acids that has been proven to be impressively versatile, dating to its hypothesized RNA World origins, evidenced by its enzymatic roles in facilitating DNA replication, mRNA decay, and protein synthesis. This is underscored through the activities of riboswitches, spliceosomes, ribosomes, and telomerases.

View Article and Find Full Text PDF

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Background: Prior to the introduction of disease-modifying treatments (DMTs), children with type 1 spinal muscular atrophy (SMA) typically did not survive beyond the age of 2 years; management was mainly palliative. Novel therapies have made this a treatable condition, resulting in increased life expectancy and more time spent upright. Survival and improved function mean spinal asymmetry is a new complication with limited data on its prevalence and severity and no current guidelines on management and treatment.

View Article and Find Full Text PDF

The ability to label synthetic oligonucleotides with fluorescent probes has greatly expanded their nanotechnological applications. To continue this expansion, it is essential to develop approachable, modular, and tunable fluorescent platforms. In this study, we present the synthesis and incorporation of an amino-formyl-thieno[3,2-]thiophene (AFTh) handle at the 5'-position of DNA oligonucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!