Phosphorylation of c-Fos at the C-terminus enhances its transforming activity.

Oncogene

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: April 1996

c-Fos is phosphorylated by MAP kinase and the 90 kDa-ribosomal S6 kinase (RSK) in vitro at serines 362 and 374 (rat) which we demonstrate are major in vivo phosphorylation sites in early G1. We have constructed c-Fos mutants with these serines changed to aspartic acid residues (FosD) to mimic phosphorylation or to alanine residues (FosA) to prevent phosphorylation. Cells expressing FosD exhibited a more extensive transformed phenotype than those expressing either FosA or wild type c-Fos (FosWT). We also observed that FosA has a reduced half-life in comparison with FosD in G1. Furthermore, we observed enhanced AP-1 transactivation activity in cells expressing FosD. These results indicate that phosphorylation of c-Fos at its extreme carboxyterminus, possibly by MAP kinase and RSK, supports the proliferative response by increasing c-Fos stability and/or by increasing its transactivation activity. Under conditions in which the MAP kinase pathway is constitutively activated, c-Fos phosphorylation probably contributes to cellular transformation. The highly conserved nature of these phosphorylation sites in other c-fos family members suggests that these may also be targets of MAP kinase and RSK.

Download full-text PDF

Source

Publication Analysis

Top Keywords

map kinase
16
kinase rsk
12
phosphorylation c-fos
8
phosphorylation sites
8
cells expressing
8
expressing fosd
8
transactivation activity
8
phosphorylation
7
c-fos
7
kinase
5

Similar Publications

Background: Femoral head necrosis (FHN) is a debilitating bone disease affecting an estimated 8 million people worldwide. Although specific drugs for FHN have limitations, targeted therapies have shown promising results. The significance of this study is underscored by the high prevalence of FHN, the limitations of current treatments, and the potential of targeted drugs and natural compounds for effective therapeutic interventions.

View Article and Find Full Text PDF

Background: Xanthones are dubbed as putative lead-like molecules for cancer drug design and discovery. This study was aimed at the synthesis, characterization, and target fishing of novel xanthone derivatives.

Methods: The products of reactions of xanthydrol with urea, thiourea, and thiosemicarbazide reacted with α-haloketones to prepare the thiazolone compounds.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

Anticancer Effects of MAPK6 siRNA-Loaded PLGA Nanoparticles in the Treatment of Breast Cancer.

J Cell Mol Med

January 2025

Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkiye.

siRNA-loaded nanoparticles open new perspectives for cancer treatment. MAPK6 is upregulated in breast cancer and is involved in cell growth, differentiation and cell cycle regulation. Herein, we aimed to investigate the anticancer effects of MAPK6 knockdown by using MAPK6 siRNA-loaded PLGA nanoparticles (siMAPK6-PLGA-NPs) in MCF-7 breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!