We studied the effects of transcranial magnetic stimulation on ipsilateral and contralateral forelimb extensor muscles in anesthetized cats. A magnetic stimulator, operating at 100% intensity, was used through a circular coil, which was placed tangentially over the midline scalp. Bilateral activation of extensor muscles was readily obtained in all animals. The onset latencies were 7.3 +/- 1.1 and 7.07 +/- 0.8 msec for the contralateral and ipsilateral muscles, respectively. The amplitude of muscle response was unstable in magnitude, nevertheless, it did not show any significant difference between the two sides. The latency of response for ipsilateral and contralateral muscles was similar, which suggests simultaneous activation of motor pathways servicing forelimb muscles. Lesioning or ablation of the motor cortex and decerebration at mid-colliculi level did not abolish the evoked responses elicited at high intensity magnetic stimulation. Stereotactic electrical stimulation of the vestibular nuclei complex was performed, and satisfactory ipsilateral motor responses were obtained. Subsequently, a stereotactic radiofrequency lesion was made at the vestibular nuclei complex, with morphological confirmation. After this lesion, the motor evoked potentials (MEPs) were significantly diminished in amplitude. This finding strongly suggests that the generator of the MEPs resides in the brainstem, mainly at the vestibular nuclei complex.

Download full-text PDF

Source

Publication Analysis

Top Keywords

magnetic stimulation
12
vestibular nuclei
12
nuclei complex
12
transcranial magnetic
8
ipsilateral contralateral
8
extensor muscles
8
muscles
5
origin muscle
4
muscle action
4
action potentials
4

Similar Publications

Purification, structural characterization, and in vitro immunomodulatory activity of a low-molecular-weight polysaccharide from cultivated Chinese cordyceps.

Int J Biol Macromol

January 2025

Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China; College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, Hunan 423000, China. Electronic address:

Cultivated Chinese cordyceps, an optimal substitute for the endangered wild resource, has recently been produced on a large scale. This work sought to explore the structural features and immunomodulatory activity of a novel low-molecular-weight polysaccharide (CSP1a, 15.7 kDa) isolated from cultivated Chinese cordyceps.

View Article and Find Full Text PDF

Bayesian Optimization Of NeuroStimulation (BOONStim).

Brain Stimul

January 2025

Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

View Article and Find Full Text PDF

The application of non-invasive neuromodulation in stuttering: Current status and future directions.

J Fluency Disord

January 2025

Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Science and Disorders, Louisiana State University, Baton Roug, LA, USA.

Non-invasive neuromodulation methods such as transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (TMS), have been extensively utilized to enhance treatment efficacy for various neurogenic communicative disorders. Recently, these methods have gained attention for their potential to reveal more about the underlying nature of stuttering and serve as adjunct therapeutic approaches for stuttering intervention. In this review, we present existing research and discuss critical factors that might influence the efficacy of these interventions, such as location, polarity, intensity, and duration of stimulation, as well as the impact of combined behavioral training.

View Article and Find Full Text PDF

When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval.

View Article and Find Full Text PDF

Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!