Purpose: To perform a phase I clinical and pharmacologic study of ZD1694 (Tomudex, Alderley Park, United Kingdom), a new folate-based thymidylate synthase (TS) inhibitor, in patients with advanced malignancy.
Patients And Methods: From February 1991 to January 1993, 61 patients with a range of solid tumor received 161 courses of ZD1694 given as a single 15-minute intravenous infusion every 3 weeks, at escalating doses from 0.1 to 3.5 mg/m2. Pharmacokinetic (PK) analysis was performed with the first two courses of treatment. There were 33 men and 28 women with a median age of 53 years (range, 21 to 73). Fifty-five patients (90%) had previously received chemotherapy.
Results: Reversible liver toxicity and dose-related gastrointestinal (GI) and bone marrow toxicity occurred at > or = 1.6 mg/m2. Liver function usually returned to normal with repeated treatment, but GI and bone marrow toxicities generally became more severe. No renal toxicity was observed. The maximum-tolerated dose (MTD) was 3.5 mg/m2, at which, in addition to antiproliferative toxicities, four of six patients (67%) developed severe malaise that consisted of anorexia, nausea, and asthenia, with rapidly decreasing performance status that limited re-treatment. Abnormal liver function was also seen in four patients (67%). At 3.0 mg/m2, grades III and IV diarrhea were seen in six of 23 patients (26%) and grade IV myelosuppression in two others. Liver toxicity was self-limiting and not associated with severe malaise. Two patients had a partial response to treatment. PK analysis showed that plasma elimination was triexponential, with pronounced variability in the mean terminal half-life (t1/2gamma) for a given dose ranging from 8.2 to 105 hours. There was a linear relationship between dose and both the area under the concentration-time curve (AUC) and maximum concentration (Cmax), but no clear association between these parameters and response or toxicity.
Conclusion: The dose of ZD1694 recommended for phase II trials is 3.0 mg/m2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1200/JCO.1996.14.5.1495 | DOI Listing |
Nutrients
October 2019
Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
Folates are water-soluble B9 vitamins that serve as one-carbon donors in the de novo synthesis of thymidylate and purines, and in the conversion of homocysteine to methionine. Due to their key roles in nucleic acid synthesis and in DNA methylation, inhibiting the folate pathway is still one of the most efficient approaches for the treatment of several tumors. Methotrexate and pemetrexed are the most prescribed antifolates and are mainly used in the treatment of acute myeloid leukemia, osteosarcoma, and lung cancers.
View Article and Find Full Text PDFPLoS One
May 2008
Department of Chemistry, University of Washington, Seattle, Washington, United States of America.
Background: Mycobacterium tuberculosis kills approximately 2 million people each year and presents an urgent need to identify new targets and new antitubercular drugs. Thymidylate synthase (TS) enzymes from other species offer good targets for drug development and the M. tuberculosis genome contains two putative TS enzymes, a conventional ThyA and a flavin-based ThyX.
View Article and Find Full Text PDFCancer Chemother Pharmacol
November 2008
Department of Medical Oncology, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
Murine L1210 leukaemia cells expressing either the reduced folate carrier (RFC) or the membrane folate receptor (MFR) were studied in vitro and in vivo to assess the dynamics of membrane transport of two categories antifolates; folate-based inhibitors of dihydrofolate reductase (methotrexate, edatrexate, aminopterin, PT523, and PT644) and thymidylate synthase (TS) [CB3717, raltitrexed, plevitrexed (BGC9331), pemetrexed and GW1843]. The potency of in situ inhibition of TS was used as an endpoint to analyze the in vitro dynamics of RFC/MFR-membrane transport of these antifolates. Both for L1210-RFC and L1210-MFR cells, the potency of in situ TS inhibition was closely correlated with increasing affinities of these transporters for the antifolates (r = 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2008
Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy.
Pteridine reductase (PTR1) is essential for salvage of pterins by parasitic trypanosomatids and is a target for the development of improved therapies. To identify inhibitors of Leishmania major and Trypanosoma cruzi PTR1, we combined a rapid-screening strategy using a folate-based library with structure-based design. Assays were carried out against folate-dependent enzymes including PTR1, dihydrofolate reductase (DHFR), and thymidylate synthase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!