A dual, double antigen, time-resolved fluorescence immunoassay (DELFIA) for the simultaneous detection and quantitation of diphtheria (D) and tetanus (T) antibodies in sera has been developed. In the double antigen format one arm of the antibody binds to antigen coated microtitre wells and the other arm binds to labelled antigen to provide a fluorescent signal. This assay was found to be functionally specific for IgG antibodies and showed a good correlation with established toxin neutralization assays. Furthermore, the double antigen set-up was species independent, permitting the direct use of existing international references of animal origin to measure protective antibody levels in humans in international units (IU/ml). The detection limit corresponded to 0.0003 IU/ml with Eu(3+)-labelled toxoids and to 0.0035 IU/ml using Sm(3+)-labelled toxoids. The assay was fast with a high capacity making it a suitable method for serological surveillance studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0022-1759(95)00270-7 | DOI Listing |
Vaccines (Basel)
January 2025
Leiden University Center for Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
Background: Shigella infections remain endemic in places with poor sanitation and are a leading cause of diarrheal mortality globally, as well as a major contributor to gut enteropathy and stunting. There are currently no licensed vaccines for shigellosis but it has been estimated that an effective vaccine could avert 590,000 deaths over a 20-year period. A challenge to effective Shigella vaccine development has been the low immunogenicity and protective efficacy of candidate Shigella vaccines in infants and young children.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia.
Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
Microbial contamination is an important factor threatening the safety of Chinese medicine preparations, and microfluidic detection methods have demonstrated excellent advantages in the application of rapid bacterial detection. In our study, a novel optical biosensor was developed for the rapid and sensitive detection of in traditional Chinese medicine on a microfluidic chip. Immune gold@platinum nanocatalysts (Au@PtNCs) were utilized for specific bacterial labeling, while magnetic nano-beads (MNBs) with a novel high-gradient magnetic field were employed for the specific capture of bacteria.
View Article and Find Full Text PDFHepatology
January 2025
Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan.
Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!