To evaluate possible functional differences between basic fibroblast growth factor (FGF) 2 isoforms we analyzed the effects of the 18-kDa FGF-2 which mainly localizes in the cytosol and that of the nuclear-targeted 22.5-kDa form on FGF receptors (FGFR) expression. These peptides were expressed at low amounts through a retroviral-infection system. Point mutated FGF-2 cDNAs under the control of the beta-actin promoter were used to infect a pancreatic cell line (AR4 2J) which does not produce FGF-2. Saturation and competition binding studies with 125I-FGF-2 revealed a 3-fold increase in both high and low affinity receptors in cells expressing the 22.5-kDa form and a 2-fold increase only in the high affinity receptors in cells producing the 18-kDa form. Kd values and molecular weights of the high affinity receptors were unaffected. Increasing cell densities or cell treatment with exogenous FGF-2 resulted in FGFR down-regulation as in control cells. Neutralizing anti-FGF-2 antibodies and suramin did not affect receptor density in control and in cells producing the 22.5-kDa form but further increased by 60 and 80%, respectively, the receptor level in cells synthesizing the 18-kDa form. These data suggest the involvement of the intracellular stored FGF-2 in FGFR up-regulation. Although all cells expressed FGFR-1, -2, and -3 mRNA only the FGFR-1 transcript was found increased, 6-fold in 22.5-kDa expressing cells and 3-fold in cell producing the shortest secreted isoform. The increase in FGFR-1 mRNA levels in the 22.5-kDa expressing cells was due to enhanced stability of the transcript. Confocal microscopy detected the presence of FGFR-1 at the cell surface whereas secretory isoforms of the receptor were not observed. Reverse transcriptase-polymerase chain reaction did not reveal significant differences in the expression of FGFR-1 variants. In the 22.5-kDa expressing cells exogenous FGF-2 evoked a stronger translocation of the calcium-phospholipid-dependent PKC. These results indicate that the transfected FGF-2 isoforms up-regulated FGFR-1 mRNA and protein. The 22.5-kDa form acted by increasing FGFR-1 mRNA stability enhancing cell responses to exogenous FGF-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.271.10.5663 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!