The interaction between four fluoroquinolones (ciprofloxacin, norfloxacin, pefloxacin, and ofloxacin) and biofilms of Pseudomonas aeruginosa in wells of microtiter plates and on segments of vascular catheters were studied in an in vitro model of vascular catheter colonization. Subinhibitory concentrations (one-half, one-fourth, and one-eight of the MIC) of the fluoroquinolones reduced the adherence of P. aeruginosa to 30 to 33, 44 to 47, and 61 to 67% of that of controls, respectively. The addition of high concentrations of the fluoroquinolones (12.5 and 400 micrograms/ml) to preformed biofilms (grown for 48 h at 37 degrees C) decreased the adherence of P. aeruginosa to 69 to 77 and 39 to 60% of that of controls, respectively. In an in vitro model of vascular catheter colonization, subinhibitory concentrations (one-half, one-fourth, and one-eight of the MIC) of fluoroquinolones reduced the number of adherent bacteria to 21 to 23, 40 to 46, and 55 to 70% of that of the controls, respectively. Scanning electron microscopy demonstrated a significant reduction in glycocalyx formation and adherent bacteria in the presence of pefloxacin at one-half to one-eight of the MIC. Vascular catheter segments precolonized with P. aeruginosa for 24 h and exposed to the fluoroquinolones at 4 to 25 times the MIC (50 micrograms/ml) for 2 h showed <5% growth of adherent cells compared with controls. No adherent organisms were cultured in the presence of 8 to 50 times the MIC (100 micrograms/ml). Scanning electron microscopy studies of preformed biofilms exposed to pefloxacin verified the results obtained by culture. These data show that subinhibitory concentrations of ciprofloxacin, norfloxacin, pefloxacin, and ofloxacin inhibit the adherence of P. aeruginosa to plastic surfaces and vascular catheters. Clinically achievable concentrations of fluoroquinolones (50 to 100 micrograms/ml) were able to eradicate preformed biofilms on vascular catheters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC162927 | PMC |
http://dx.doi.org/10.1128/AAC.39.10.2262 | DOI Listing |
Cardiovasc Revasc Med
January 2025
Department of Cardiology, MedStar Georgetown University Hospital/MedStar Washington Hospital Center, Washington, DC, USA. Electronic address:
Acute myocardial infarction (AMI) remains one of the most common causes for cardiogenic shock (CS), with high inpatient mortality (40-50 %). Studies have reported the use of pulmonary artery catheters (PACs) in decompensated heart failure, but contemporary data on their use to guide management of AMI-CS and in different SCAI stages of CS are lacking. We investigated the association of PACs and clinical outcomes in AMI-CS.
View Article and Find Full Text PDFCardiovasc Revasc Med
January 2025
Department of Cardiovascular disease, Henry Ford, Detroit, MI, USA.
Introduction: Cardiogenic shock (CS) is marked by substantial morbidity and mortality. The two major CS etiologies include heart failure (HF) and acute myocardial infarction (AMI). The utilization trends of mechanical circulatory support (MCS) and their clinical outcomes are not well described.
View Article and Find Full Text PDFJACC Cardiovasc Interv
January 2025
Institut Cardiovasculaire Paris-Sud, Hôpital Privé Jacques Cartier, Ramsay-Santé, Massy, France. Electronic address:
Background: The prevalence of coronary artery disease in patients undergoing transcatheter aortic valve replacement (TAVR) is high. Treatment of a coronary events (CE) after TAVR can be technically challenging.
Objectives: The authors sought to assess the incidence and prognostic impact of CE after TAVR.
Catheter Cardiovasc Interv
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
Background: Biodegradable polymer stents may reduce the risk of neoatherosclerosis and stent thrombosis. Limited data is available for biodegradable polymer sirolimus-eluting stent (BP-SES) and durable polymer drug-eluting stents (DP-EES) in chronic total occlusions (CTO).
Aim: This study was to evaluate healing patterns of BP-SES versus DP-EES in CTO at 3 and 13 months based on optical coherence tomography (OCT).
J Vasc Access
January 2025
RISE@Health, Departamento de Biomedicina - Unidade de Anatomia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
Introduction: Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) has emerged as a crucial component of critical care medicine, mainly as a lifesaving intervention for patients experiencing refractory cardiac arrest and respiratory failure.
Background: In the past, VA-ECMO decannulation was surgical and often associated with a high rate of periprocedural complications, such as surgical site infection, bleeding, and patient mobilization costs. To reduce the rate of these adverse events, many percutaneous techniques utilizing suture-mediated closing devices have been adopted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!