The wood-derived compound, beta-sitosterol (purity > 90%), was shown to be estrogenic in fish. It induced the expression of the vitellogenin gene in the liver of juvenile and methyltestosterone-treated rainbow trout. Structural similarities to beta-sitosterol notwithstanding, cholesterol, citrostadienol, beta-sitostanol, and 5-androstene-3 beta,17 beta-diol, an estrogenic member of the androstenic steroid group, were inactive. An abietic acid mixture (37% abietic acid, 6% dehydroabietic acid, and a remainder of unknown compounds) showed slight hormonal activity in feed, but it was completely inactive when given intraperitoneally in implants. The estrogenic component of the abietic acid preparation was not identified. In addition, to beta-sitosterol and abietic acid, several other wood-derived compounds including betulin, isorhapontigenin, isorhapontin, and pinosylvin were estrogenic in breast cancer cells (MCF-7 or T-47D). However, betulin and pinosylvin, available in sufficient amounts for in vivo testing, did not induce the expression of the vitellogenin gene. Differences in the primary sequences of human and fish estrogen receptors (hormone as well as DNA-binding regions) or uptake and metabolism of the compounds may explain the discrepancy between the two estrogen bioassays. Wood-derived compounds such as beta-sitosterol, present in pulp and paper mill effluents, may account for the weak estrogenicity of debarking effluent seen at the vitellogenin expression bioassay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/taap.1996.0046 | DOI Listing |
Anal Sci
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
"Liquid gold" has been traditionally used for over a century to decorate ceramicware, but its chemical composition has not been thoroughly investigated. One of the keys to successfully characterizing liquid gold, which is a complex mixture, is to distinguish Au-containing products from other chemicals. In this paper, we propose a separation based on the difference in collision cross section, of which chemicals with heavy atoms are relatively smaller than those without in ion mobility-mass spectrometry (IM-MS).
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Chemistry, Dong-A University, Busan 49315, Republic of Korea.
Cobalt (II, III) oxide (CoO) has recently gained attention as an alternative anode material to commercial graphite in lithium-ion batteries (LIBs) due to its superior safety and large theoretical capacity of about 890 mAh g. However, its practical application is limited by poor electrical conductivity and rapid capacity degradation because of significant volume increases and structural strain during repeated lithiation/delithiation cycles. To address these issues, this work presents a novel approach to synthesizing carbon-composited CoO microspheres (CoO@C), using abietic acid (AA) as a carbon source to increase conductivity and structural stability.
View Article and Find Full Text PDFGels
November 2024
Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece.
J Org Chem
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Kalyani, Nadia,West Bengal 741 246, India.
The asymmetric syntheses of naturally occurring biologically relevant -abietane diterpenoids, (-)-taiwaniaquinone G (), and H () have been reported via a chiral pool strategy starting from commercially available abietic acid. A ring contraction of the middle ring of the [6,6,6]-carbotricyclic abietane diterpenoid core was carried out under the Wolff rearrangement. Finally, the synthesis of (-)-taiwaniaquinone H () was completed via a one-pot CAN-mediated oxidative decarboxylation.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências, Department of Chemistry, 17033-260, Bauru, SP, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!