It was demonstrated previously that a deoxyribophosphodiesterase (dRpase) activity is associated with the DNA repair enzyme exonuclease I, and that this activity is stimulated by the addition of the E. coli single-stranded DNA-binding protein (Ssb). This activity catalyzes the release of deoxyribose-phosphate groups at apurinic/apyrimidinic (AP) sites in the DNA that have been cleared by the action of an AP endonuclease. We have now used the yeast two-hybrid system to demonstrate that a protein-protein interaction occurs between exonuclease I and Ssb. When the E. coli ssb gene was fused in frame to the DNA-activating domain of the GAL4 transcriptional activator and the exonuclease I gene was fused in frame to the DNA-binding domain, a functional GAL4 transcriptional activator was produced as determined by growth of yeast on selective medium and the measurement of beta-galactosidase activity. We have also demonstrated that Ssb can stimulate the dRpase activity of exonuclease I using double-stranded bacteriophage M13 DNA containing several strand interruptions at incised AP sites. These results suggest that Ssb may be required for efficient base-excision repair in bacteria.
Download full-text PDF |
Source |
---|
Int J Mol Sci
January 2025
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye.
Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States.
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798-7348, USA. Electronic address:
Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli (E. coli). Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains.
View Article and Find Full Text PDFJ Biochem
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
For bidirectional replication in E. coli, higher-order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2024
College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!