It was demonstrated previously that a deoxyribophosphodiesterase (dRpase) activity is associated with the DNA repair enzyme exonuclease I, and that this activity is stimulated by the addition of the E. coli single-stranded DNA-binding protein (Ssb). This activity catalyzes the release of deoxyribose-phosphate groups at apurinic/apyrimidinic (AP) sites in the DNA that have been cleared by the action of an AP endonuclease. We have now used the yeast two-hybrid system to demonstrate that a protein-protein interaction occurs between exonuclease I and Ssb. When the E. coli ssb gene was fused in frame to the DNA-activating domain of the GAL4 transcriptional activator and the exonuclease I gene was fused in frame to the DNA-binding domain, a functional GAL4 transcriptional activator was produced as determined by growth of yeast on selective medium and the measurement of beta-galactosidase activity. We have also demonstrated that Ssb can stimulate the dRpase activity of exonuclease I using double-stranded bacteriophage M13 DNA containing several strand interruptions at incised AP sites. These results suggest that Ssb may be required for efficient base-excision repair in bacteria.

Download full-text PDF

Source

Publication Analysis

Top Keywords

coli single-stranded
8
single-stranded dna-binding
8
dna-binding protein
8
drpase activity
8
gene fused
8
fused frame
8
gal4 transcriptional
8
transcriptional activator
8
exonuclease
5
activity
5

Similar Publications

Nicking Activity of M13 Bacteriophage Protein 2.

Int J Mol Sci

January 2025

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye.

Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro.

View Article and Find Full Text PDF

DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.

View Article and Find Full Text PDF

Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli (E. coli). Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains.

View Article and Find Full Text PDF

SSB promotes DnaB helicase passage through DnaA complexes at the replication origin oriC for bidirectional replication.

J Biochem

January 2025

Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

For bidirectional replication in E. coli, higher-order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex.

View Article and Find Full Text PDF

[Prokaryotic expression and helicase activity analysis of PDCoV NSP13].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.

Article Synopsis
  • Porcine deltacoronavirus (PDCoV) causes severe diarrhea in piglets, and effective prevention methods are currently lacking.
  • Researchers synthesized the PDCoV gene to create a recombinant plasmid that expressed the nonstructural protein 13 (NSP13), which has crucial helicase activity.
  • The study confirmed NSP13's ability to unwind DNA and its regulatory factors, offering insights for future antiviral drug development aimed at combatting PDCoV.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!