Incubating rat diaphragm muscles with insulin increased the glycogen synthase activity ratio (minus glucose 6-phosphate/plus glucose 6-phosphate) by approximately 2-fold. Insulin increased the activities of mitogen-activated protein (MAP) kinase and the Mr = 90,000 isoform of ribosomal protein S6 kinase (Rsk) by approximately 1.5-2.0-fold. Epidermal growth factor (EGF) was more effective than insulin in increasing MAP kinase and Rsk activity, but in contrast to insulin, EGF did not affect glycogen synthase activity. The activation of both MAP kinase and Rsk by insulin was abolished by incubating muscles with the MAP kinase kinase (MEK) inhibitor, PD 098059; however, the MEK inhibitor did not significantly reduce the effect of insulin on activating glycogen synthase. Incubating muscles with concentrations of rapamycin that inhibited activation of p70S6K abolished the activation of glycogen synthase. Insulin also increased the phosphorylation of PHAS-I (phosphorylated heat- and acid-stable protein) and promoted the dissociation of the PHAS-I*eIF-4E complex. Increasing MAP kinase activity with EGF did not mimic the effect of insulin on PHAS-I phosphorylation, and the effect of insulin on increasing MAP kinase could be abolished with the MEK inhibitor without decreasing the effect of insulin on PHAS-I. The effects of insulin on PHAS-I were attenuated by rapamycin. Thus, activation of the MAP kinase/Rsk signaling pathway appears to be neither necessary nor sufficient for insulin action on glycogen synthase and PHAS-I in rat skeletal muscle. The results indicate that the effects of insulin on increasing the synthesis of glycogen and protein in skeletal muscle, two of the most important actions of the hormone, involve a rapamycin-sensitive mechanism that may include elements of the p70S6K signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.271.9.5033 | DOI Listing |
J Biol Chem
January 2025
Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal, India, 741235. Electronic address:
Aberrant activation of the hedgehog (Hh) signaling pathway positively correlates with progression, invasion and metastasis of several cancers, including breast cancer. Although numerous inhibitors of the Hh signaling pathway are available, several oncogenic mutations of key components of the pathway, including Smoothened (Smo), have limited their capability to be developed as putative anti-cancer drugs. In this study, we have modulated the Hh signaling pathway in breast cancer using a specific FDA-approved phosphodiesterase 4 (PDE4) inhibitor rolipram.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033. Electronic address:
Increasing evidence supports the role of an augmented immune response in the early development and progression of renal complications caused by diabetes. We recently demonstrated that podocyte-specific expression of stress response protein regulated in development and DNA damage response 1 (REDD1) contributes to activation of the pro-inflammatory transcription factor NF-κB in the kidney of diabetic mice. The studies here were designed to define the specific signaling events whereby REDD1 promotes NF-κB activation in the context of diabetic nephropathy.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
Tau hyper-phosphorylation has been recognized as an essential contributor to neurodegeneration in Alzheimer's disease (AD) and related tauopathies. In the last decade, tau hyper-phosphorylation has gained considerable concern in AD therapeutic development. Tauopathies are manifested with a broad spectrum of symptoms, from dementia to cognitive decline and motor impairments.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:
Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!