Quinaldine 4-oxidase from Arthrobacter sp. Rü61a, an inducible molybdenum-containing hydroxylase, was purified to homogeneity by an optimized five-step procedure. Molecular oxygen is proposed as physiological electron acceptor. Electrons are also transferred to artificial electron acceptors with E'o > -8 mV. The molybdo-iron/sulfur flavoprotein regiospecifically attacks its N-heterocyclic substrates: isoquinoline and phthalazine are hydroxylated adjacent to the N-heteroatom at Cl, whereas quinaldine, quinoline, cinnoline and quinazoline are hydroxylated at C4. Additionally, the aromatic aldehydes benzaldehyde, salicylaldehyde, vanillin and cinnamaldehyde are oxidized to the corresponding carboxylic acids, whereas short-chain aliphatic aldehydes are not. Quinaldine 4-oxidase is compared to the two molybdenum-containing hydroxylases quinoline 2-oxidoreductase from Pseudomonas putida 86 [Tshisuaka, B., Kappl, R., Hüttermann, J. & Lingens, F. (1993) Biochemistry 32, 12928-12934] and isoquinoline 1-oxidoreductase from Pseudomonas diminuta 7 [Lehmann, M., Tshisuaka, B., Fetzner, S., Röger, P. & Lingens, F. (1994) J. Biol. Chem. 269, 11254-11260] with respect to the substrates converted and the electron-acceptor specificities. These dehydrogenases hydroxylate their N-heterocyclic substrates exclusively adjacent to the heteroatom. Whereas the aldehydes tested are scarcely oxidized by quinoline 2-oxidoreductase, isoquinoline 1-oxidoreductase catalyzes the oxidation of the aromatic aldehydes, although being progressively inhibited. Neither quinoline 2-oxidoreductase nor isoquinoline 1-oxidoreductase transfer electrons to oxygen. Otherwise, the spectrum of electron acceptors used by quinoline 2-oxidoreductase and quinaldine 4-oxidase is identical. However, isoquinoline 1-oxidoreductase differs in its electron-acceptor specificity. Quinaldine 4-oxidase is unusual in its substrate and electron-acceptor specificity. This enzyme is able to function as oxidase or dehydrogenase, it oxidizes aldehydes, and it catalyzes the nucleophilic attack of N-containing heterocyclic compounds at two varying positions depending on the substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1996.00155.x | DOI Listing |
J Ind Microbiol Biotechnol
July 2012
Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany.
In an earlier study, biocatalytic carbon oxyfunctionalization with water serving as oxygen donor, e.g., the bioconversion of quinaldine to 4-hydroxyquinaldine, was successfully achieved using resting cells of recombinant Pseudomonas putida, containing the molybdenum-enzyme quinaldine 4-oxidase, in a two-liquid phase (2LP) system (Ütkür et al.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
August 2011
Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany.
Biocatalytic hydrocarbon oxyfunctionalizations are typically accomplished using oxygenases in living bacteria as biocatalysts. These processes are often limited by either oxygen mass transfer, cofactor regeneration, and/or enzyme instabilities due to the formation of reactive oxygen species. Here, we discuss an alternative approach based on molybdenum (Mo)-containing dehydrogenases, which produce, rather than consume, reducing equivalents in the course of substrate hydroxylation and use water as the oxygen donor.
View Article and Find Full Text PDFJ Bacteriol
May 2007
Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany.
The nucleotide sequence of the linear catabolic plasmid pAL1 from the 2-methylquinoline (quinaldine)-degrading strain Arthrobacter nitroguajacolicus Rü61a comprises 112,992 bp. A total of 103 open reading frames (ORFs) were identified on pAL1, 49 of which had no annotatable function. The ORFs were assigned to the following functional groups: (i) catabolism of quinaldine and anthranilate, (ii) conjugation, and (iii) plasmid maintenance and DNA replication and repair.
View Article and Find Full Text PDFBiochemistry
December 2006
Institut für Biophysik, Universität des Saarlandes, D-66421 Homburg, Germany.
Quinaldine 4-oxidase (Qox), which catalyzes the hydroxylation of quinaldine to 1H-4-oxoquinaldine, is a heterotrimeric (LMS)2 molybdo-iron/sulfur flavoprotein belonging to the xanthine oxidase family. Variants of Qox were generated by site-directed mutagenesis. Replacement in the large subunit at E736, which is presumed to be located close to the molybdenum, by aspartate (QoxLE736D) resulted in a marked decrease in kcat app for quinaldine, while Km app was largely unaffected.
View Article and Find Full Text PDFMicrobiology (Reading)
February 2005
Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149 Münster, Germany.
Arthrobacter nitroguajacolicus Rü61a, which utilizes quinaldine as sole source of carbon and energy, was shown to contain a conjugative linear plasmid of approximately 110 kb, named pAL1. It exhibits similarities with other linear plasmids from Actinomycetales in that it has proteins covalently attached to its 5' ends. Southern hybridization with probes for the genes encoding quinaldine 4-oxidase and N-acetylanthranilate amidase indicated that pAL1 contains the gene cluster encoding the degradation of quinaldine to anthranilate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!