Different modes of proton translocation by sensory rhodopsin I.

EMBO J

Max-Plank-Institut für Biochemie, Martinsried, Germany.

Published: April 1996

AI Article Synopsis

Article Abstract

The membrane-bound complex between sensory rhodopsin I (SRI) and its transducer HtrI forms the functional photoreceptor unit that allows transmission of light signals to the flagellar motor. Although being a photosensor, SRI, the mutant SRI-D76N and the HtrI-SRI complex can transport protons, as we demonstrate by using the sensitive and ion-specific black lipid membrane technique. SRI sustains an orange light-driven (one-photon-driven) outward proton transport which is enhanced by additional blue light (two-photon-driven). The vectoriality of the two-photon-driven transport could be reversed at neutral pH from the outward to the inward direction by switching the cut-off wavelength of the long wavelength light from 550 to 630 nm. The cut-off wavelength determining the reversal point decreases with decreasing pH. The currents could be enhanced by azide. A two-photon-driven inward proton transport by SRI-D76N (catalyzed by azide) and by the complex HtrI-SRI is demonstrated. The influence of pH and azide concentration on the rise and decay kinetics of the SRI380 intermediate is analyzed. The different modes of proton translocation of the SRI species are discussed on the basis of a general model of proton translocation of retinal proteins and in the context of signal transduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC450100PMC

Publication Analysis

Top Keywords

proton translocation
12
modes proton
8
sensory rhodopsin
8
proton transport
8
cut-off wavelength
8
translocation sensory
4
rhodopsin membrane-bound
4
membrane-bound complex
4
complex sensory
4
sri
4

Similar Publications

Terahertz (THz) radiation has gained attention due to technological advancements, but its biological effects remain unclear. We investigated the impact of 2.3 THz radiation on SK-MEL-28 cells using metabolomic and gene network analysis.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.

View Article and Find Full Text PDF

Electric Forces and ATP Synthesis.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

ATP synthase is a rotary motor enzyme that drives the formation of ATP from ADP and P and uses multiple electrical forces to do this. This chapter outlines the exquisite use of these electrical forces to generate the high energy phosphates on which all our lives depend. Vacuolar ATPases and the ADP/ATP carrier also are explored.

View Article and Find Full Text PDF

Dexlansoprazole acts as a disruptor of the aryl hydrocarbon receptor and ITE.

Food Chem Toxicol

January 2025

Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC. Electronic address:

Dexlansoprazole, a proton pump inhibitor, is commonly used to treat gastro-oesophageal reflux disease and erosive esophagitis. The activated aryl hydrocarbon receptor (AhR) functions as a transcription factor by binding to the aryl hydrocarbon response element (AHRE) of its target genes, with cytochrome P450 (CYP) 1A1 being the most well-known target. In this study, we demonstrated that dexlansoprazole stimulates AhR activity, leading to increased CYP1A1 expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!