With increasing awareness that seemingly diverse immune-mediated diseases involve similar pathogenetic mechanisms, and the identification of a growing number of key effector molecules, it is becoming possible to design and generate effective transgenic models for such diseases. Tumor necrosis factor (TNF) plays a prominent role in immune and host defense responses and there is strong evidence that abnormal TNF production contributes to disease initiation and progression in rheumatoid arthritis, systemic inflammatory response syndrome, diabetes, multiple sclerosis, and many other immune-mediated disorders. The generation of TNF transgenic mice, in which TNF production is deregulated, has provided us with direct evidence that, in vivo, this cytokine can indeed trigger the development of such complex disease phenotypes. Transgenic mice that have been engineered to overexpress human or murine TNF molecules in peripheral joints, T cells, or neurons of the central nervous system represent important animal models for human rheumatoid arthritis, systemic inflammation, and multiple sclerosis, respectively. In addition to establishing a central role for TNF in such diseases, these animal models have already proved valuable for identifying additional important disease-effector molecules, and for gaining an insight into the complex in vivo mechanisms that are involved in disease pathogenesis. For example, in the case of arthritis, TNF has been found to transmit its pathogenic effects entirely through interleukin-1, which may therefore represent an additional important target for therapeutic intervention in the human disease. In summary, TNF transgenic models of human disease are expected to serve as important in vivo tools for defining details of disease pathogenesis, potential targets for therapeutic intervention and for evaluating the possible involvement of additional genetic and environmental factors on the disease state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jlb.59.4.518 | DOI Listing |
Sci Adv
January 2025
Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America.
Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, People's Republic of China.
Interferon regulatory factor 3 (IRF3) is the key transcription factor in the type I IFN signaling pathway, whose activation is regulated by multiple posttranslational modifications. Here, we identify SMYD3, a lysine methyltransferase, as a negative regulator of IRF3. SMYD3 interacts with IRF3 and catalyzes the dimethylation of IRF3 at lysine 39.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice.
Methods: SR in the retinas and the content of D-serine in the aqueous humor were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!