We have established long-term human myogenic cultures from adult human skeletal muscle biopsies by infecting primary explant cultures with an amphotropic retroviral construct encoding a temperature-sensitive SV40 large T antigen, tsA58-U19. Infected myoblasts expressed the large T antigen and showed greatly enhanced proliferative capacity when cultured at 33 degrees C, compared with noninfected cells. When the infected cultures were incubated at 39 degrees C, the cells withdrew from cycle, aligned, and fused to form multinucleated myotubes which expressed certain antigens that are similarly expressed in nontransduced differentiating muscle cells. Myogenic clones with greatly increased proliferative capacity were generated, for the first time, from biopsies obtained from Duchenne muscular dystrophy patients as well as from normal, dystrophin-positive individuals. Cell lines produced by this approach may prove valuable for in vitro studies of myogenesis and for investigating the cellular and molecular consequences of inherited muscle diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1006/excr.1996.0136DOI Listing

Publication Analysis

Top Keywords

large antigen
12
myogenic cultures
8
duchenne muscular
8
muscular dystrophy
8
temperature-sensitive sv40
8
sv40 large
8
proliferative capacity
8
establishment long-term
4
long-term myogenic
4
cultures
4

Similar Publications

High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:

Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.

View Article and Find Full Text PDF

Pericytes mediate neuroinflammation via Fli-1 in endotoxemia and sepsis in mice.

Inflamm Res

January 2025

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.

Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.

View Article and Find Full Text PDF

: Chronic antibody-mediated rejection (cAMR) constitutes a serious challenge in the long-term success of organ transplantation. It is associated with donor-specific antibodies (DSAs) which activate a complement pathway in response to the presence of human leukocyte antigens (HLAs) on the graft, which results in chronic inflammation and leads to graft dysfunction. One of the recent promising methods of cAMR treatment is a recombinant humanized anti-interleukin-6 receptor (IL-6R) monoclonal antibody referred to as Tocilizumab (TCZ).

View Article and Find Full Text PDF

Hearing loss is one of the most common sensory disorders in humans, and a large number of cases are due to ear cell damage caused by ototoxic drugs including anticancer agents, such as cisplatin. The recent literature reported that hearing loss is promoted by an excessive generation of reactive oxygen species (ROS) in cochlea cells, which causes oxidative stress. Recently, polysaccharides from the cyanobacterium showed many biological activities, including antioxidant activity, suggesting their potential use to combat hearing loss.

View Article and Find Full Text PDF

Characterizing SV40-hTERT Immortalized Human Lung Microvascular Endothelial Cells as Model System for Mechanical Stretch-Induced Lung Injury.

Int J Mol Sci

January 2025

Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.

Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!