Pregnancy-specific beta 1 glycoprotein genes (PSG) are mainly expressed during human placental development, though their expression has been reported in other normal and pathological tissues, e.g. hydatidiform mole (HM), of distinct origins. However, the molecular components implicated in the regulation of PSG are not well understood. To identify some of the regulatory elements involved in the transcriptional control of PSG expression, the DNA-protein interactions and the basal activities of the TATA-box-less PSG5 promoter were determined in different tissues and cell types. In DNAse-I protection assays, DNA-binding proteins from human term placenta (HTP) protected a region of 27 bp located from nucleotides --150 to --124, overlapping the farthest 5' upstream cap site and resembling an initiator-like element. In electrophoretic mobility shift assays (EMSA), three complexes were detected using nuclear extracts from HTP and an oligonucleotide containing the 27-bp motif. In situ ultraviolet crosslinking analysis of the specific complexes revealed that two proteins of 78.0 kDa and 53.0 kDa are involved in such interactions, in accordance with the bands of 80.0 kDa and 57.5 kDa observed by Southwestern blotting. Competitive EMSA using mutant oligonucleotides with the substitution of 5'ACCCAT3' by 5'GATATC3' within the 27-bp motif revealed that this sequence is fundamental for the formation of the specific DNA-protein complexes. We show in transient transfection experiments performed in HeLa, COS-7 and JEG-3 cells, that such mutation completely abolished the transcriptional activity of the PSG5 promoter, independently of the cell type. Moreover, this mutation disrupted the formation of the specific DNA-protein complexes which were essentially the same as those displayed by HTP. We also determined the binding activities of nucleoproteins derived from placental tissues in earlier developmental and pathological stages, i.e. first trimester placenta (1-TRIM) and HM, respectively, showing that the DNA-binding patterns were different from each other and distinct from those elicited by HTP. Our results indicate that the cis-acting and trans-acting elements analyzed are indispensable to support PSG5 promoter activity in cell lines which do or do not produce PSG. In addition, these elements appear to play a role in the mechanisms involved in PSG basal expression during placental development and differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1996.00365.x | DOI Listing |
Nat Struct Mol Biol
April 2023
Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
The placenta is a fast-evolving organ with large morphological and histological differences across eutherians, but the genetic changes driving placental evolution have not been fully elucidated. Transposable elements, through their capacity to quickly generate genetic variation and affect host gene regulation, may have helped to define species-specific trophoblast gene expression programs. Here we assess the contribution of transposable elements to human trophoblast gene expression as enhancers or promoters.
View Article and Find Full Text PDFBioresour Bioprocess
August 2022
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum.
View Article and Find Full Text PDFFEBS Open Bio
March 2021
Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, Korea.
Pregnancy-specific glycoproteins (PSGs) are fetal proteins secreted by the placenta during pregnancy. The PSG level in maternal serum is an indicator of risk for pregnancy complications. However, little is known about the molecular mechanisms underlying PSG gene expression.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
February 2021
Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China.
The expression and activity of CYP3A4 vary among individuals. With the development of epigenetics, it is now possible to elucidate interindividual differences in drug-metabolizing enzymes. Here, we aimed to explore the potential relationship between DNA methylation and CYP3A4 expression.
View Article and Find Full Text PDFJ Appl Genet
February 2020
Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine.
The urgent need for discovering new bioactive metabolites prompts exploring novel actinobacterial taxa by developing appropriate tools for their genome mining and rational genetic engineering. One promising source of new bioactive natural products is the genus Actinoplanes, a home to filamentous sporangia-forming actinobacteria producing many important specialized metabolites such as teicoplanin, ramoplanin, and acarbose. Here we describe the development of a gene expression system for a new Actinoplanes species, A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!