We have discovered transposase sequences in the bull frog (Rana catesbeiana) and in the clawed frog (Xenopus laevis), which demonstrates that there are DNA-mediated transposons in Amphibia. The DNA sequences of 11 new Xenopus elements describe two new vertebrate transposon families. Phylogenetic analysis, using these sequences along with previously defined vertebrate and invertebrate elements, reveals at least five families of Tc1-like elements in Vertebrata. Some of these families co-exist in the same genome. Furthermore, the grouping of one of the amphibian transposon families with a branch of the teleost transposons raises the possibility of horizontal transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1996.0168 | DOI Listing |
Genetics
January 2025
Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany.
Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times.
View Article and Find Full Text PDFGenes Dev
December 2024
Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.
View Article and Find Full Text PDFPlant Genome
March 2025
School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
Repetitive DNA contributes significantly to plant genome size, adaptation, and evolution. However, little is understood about the transcription of repeats. This is addressed here in the plant green foxtail millet (Setaria viridis).
View Article and Find Full Text PDFNucleic Acids Res
January 2025
CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
Dinucleases of the DEDD superfamily, such as oligoribonuclease, Rexo2 and nanoRNase C, catalyze the essential final step of RNA degradation, the conversion of di- to mononucleotides. The active sites of these enzymes are optimized for substrates that are two nucleotides long, and do not discriminate between RNA and DNA. Here, we identified a novel DEDD subfamily, members of which function as dedicated deoxydinucleases (diDNases) that specifically hydrolyze single-stranded DNA dinucleotides in a sequence-independent manner.
View Article and Find Full Text PDFInsects
November 2024
College of Life Science, Hebei University, Baoding 071002, China.
: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in , focusing on the influence of transposons across different omics levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!