An in vitro system for investigating the assembly of the Salmonella phage P22 has been exploited to elucidate the structural basis of recognition between scaffolding protein (gp8) and coat protein (gp5) subunits of the viral procapsid. Raman spectroscopy and circular dichroism have been employed to examine structural thermostabilities of both gp8 and gp5 in native procapsids, and to characterize structural changes accompanying scaffolding exit, procapsid expansion, and shell disassembly. It is found that the secondary structure of the isolated gp8 subunit is rich in alpha-helix (approximately 40%), is highly thermolabile, and is characterized by noncooperative unfolding (Tm approximately 49 degrees C). Conversely, the procapsid-bound gp8 subunit exhibits stabilization of its alpha-helical secondary structure, characterized by cooperative unfolding. Because cooperative unfolding of gp8 coincides with exit from the procapsid, the present results suggest that unfolding and release are coupled processes. Structural differences between procapsid-free and procapsid-bound gp8 subunits are also apparent in Raman markers which monitor environments of tyrosine and tryptophan side chains. Temperature-resolved Raman spectroscopy of the empty procapsid shell reveals three distinct structural transitions for the gp5 subunits. The first, which occurs between 50 and 65 degrees C, is attributed to shell expansion and results in an increase in beta-strand secondary structure. The two higher temperature transitions, occurring within intervals of 70-80 and 80-95 degrees C, respectively, are attributed to partial unfolding of the shell subunit and subsequent shell disassembly. The same gp5 structure transitions are detected for procapsids which contain scaffolding protein. On the basis of the observed thermodynamic coupling between gp8 unfolding and its release from the procapsid, we propose a model for P22 procapsid assembly. Implications of the model for in vivo assembly of dsDNA viruses are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi952793lDOI Listing

Publication Analysis

Top Keywords

secondary structure
12
structural transitions
8
scaffolding protein
8
gp5 subunits
8
raman spectroscopy
8
exit procapsid
8
shell disassembly
8
gp8 subunit
8
procapsid-bound gp8
8
cooperative unfolding
8

Similar Publications

Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.

View Article and Find Full Text PDF

Azurin, a bacterial blue-copper protein, has garnered significant attention as a potential anticancer drug in recent years. Among twenty Pseudomonas aeruginosa isolates, we identified one isolate that demonstrated potent and remarkable azurin synthesis using the VITEK 2 system and 16S rRNA sequencing. The presence of the azurin gene was confirmed in the genomic DNA using specific oligonucleotide primers, and azurin expression was also detected in the synthesized cDNA, which revealed that the azurin expression is active.

View Article and Find Full Text PDF

Chronic kidney disease.

Nat Rev Dis Primers

January 2025

Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians University, Munich, Germany.

Chronic kidney disease (CKD) is defined by persistent abnormalities of kidney function or structure that have consequences for the health. A progressive decline of excretory kidney function has effects on body homeostasis. CKD is tightly associated with accelerated cardiovascular disease and severe infections, and with premature death.

View Article and Find Full Text PDF

Extraction, Isolation, and Structural Elucidation of Acylated Triterpene Saponins from Asteraceae Family.

Methods Mol Biol

January 2025

College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.

Saponins represent specialized (secondary) metabolites primarily sourced from plants, typically characterized by an aglycone component of triterpenoids or steroids, often referred to as sapogenin, coupled with sugar moieties. Their structural intricacy and diversity, along with their manifold pharmacological properties, have garnered significant interest among researchers. Notwithstanding this interest, the study of saponins has been encumbered by challenges in their isolation, purification, and structural characterization.

View Article and Find Full Text PDF

sgRNA Single-Nucleotide Resolution by Ion-Pairing Reversed-Phase Chromatography.

Anal Chem

January 2025

Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States.

Single-stranded guide RNAs (sgRNAs) are important therapeutic modalities that facilitate selective genome editing by the CRISPR/Cas9 system. While these therapeutic modalities are synthesized through solid phase oligonucleotide synthesis similar to small interfering RNA (siRNAs) and antisense oligonucleotide (ASOs) therapeutics, their sequence length and complex secondary and tertiary structure hinder analytical characterization. The resulting current sgRNA methodologies have limited chromatographic selectivity near the FLP and limited MS compatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!