In order to investigate the relationships between metals zinc [Zn], copper [Cu], magnesium [Mg], or Calcium [Ca] and noninsulin-dependent diabetes mellitus, 65 patients of newly diagnosed noninsulin-dependent diabetes mellitus and 54 nondiabetic healthy controls were studied. The concentrations of selected metals in fasting blood samples and 24-h urine collections were determined. Hyperzincuria and hypermagnesuria were detected in diabetic patients (p < 0.01). The diabetics also had lower Zn and Mg, and higher Cu, and Ca levels in their plasma than those of the controls, but the statistical differences in Ca and Mg were not significant. Significantly lower Zn and higher Ca levels in erythrocytes were found in diabetic patients (p < 0.01). There is evidence of a significant difference in metals status between diabetic patients with or without the specific complications. This study further indicates that patients with NIDDM on Taiwan also have distinct changes in their metals status, and these perturbations are associated with some diabetic complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02789414 | DOI Listing |
Front Oncol
January 2025
Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
Background: Colorectal cancer (CRC) is one of thes most prevalent malignant tumors worldwide. Current therapeutic strategies for CRC have limitations, while nanomaterials show significant potential for diagnosing and treating CRC. This study utilizes bibliometric analysis to evaluate the current status and trends in this field.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Materials Synthesis Laboratory, Carbon Tech Industrial Group, Carbon Tech, Tehran, Iran.
Background: Strongyle nematodes pose a major challenge in veterinary parasitology, causing significant economic losses in livestock due to resistance to conventional treatments. Current anthelmintics, like Ivermectin, often encounter resistance issues. This study aims to address these gaps by synthesizing Carbon Quantum Dots (CQDs) and Copper-Doped CQDs (Cu@CQDs) using glucose extract, and evaluating their nematicidal properties against strongyles in vitro.
View Article and Find Full Text PDFSci Rep
January 2025
Jinzhou Medical University School of Stomatology, Liaoning, People's Republic of China.
Objective of this study was to examine the clinical efficacy and mechanical characteristics of the modified titanium post in the restoration of subgingival defect teeth. Teeth with subgingival defects depth ≥ 2 mm were randomly restored using a fiber post after crown lengthening and a modified titanium post, respectively. Gingival index, sulcus bleeding index, probing depth, tooth mobility, and gingival papilla height were recorded before and after restoration.
View Article and Find Full Text PDFSci Total Environ
January 2025
Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil. Electronic address:
The initial performance of seedlings of tree species from different functional groups, regarding the growth-defense tradeoff, might determine its long-term success during the rehabilitation of mining areas. We monitored the field performance of six native tree species of the Atlantic Forest in the Fundão dam tailing that has been under rehabilitation for 35 months. Additionally, we explored the morphophysiological traits driving the superior performance of three species.
View Article and Find Full Text PDFACS Nano
January 2025
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.
Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!