The accepted standard treatment of relapsing multiple sclerosis consists of medications for disease symptoms, including treatment for acute exacerbations. However, currently there is no therapy that alters the progression of physical disability associated with this disease. The purpose of this study was to determine whether interferon beta-1a could slow the progressive, irreversible, neurological disability of relapsing multiple sclerosis. Three hundred one patients with relapsing multiple sclerosis were randomized into a double-blinded, placebo-controlled, multicenter phase III trial of interferon beta-1a. Interferon beta-1a, 6.0 million units (30 micrograms¿, was administered by intramuscular injection weekly. The primary outcome variable was time to sustained disability progression of at least 1.0 point on the Kurtzke Expanded Disability Status Scale (EDSS). Interferon beta-1a treatment produced a significant delay in time to sustained EDSS progression (p = 0.02). The Kaplan-Meier estimate of the proportion of patients progressing by the end of 104 weeks was 34.9% in the placebo group and 21.9% in the interferon beta-1a-treated group. Patients treated with interferon beta-1a also had significantly fewer exacerbations (p = 0.03) and a significantly lower number and volume of gadolinium-enhanced brain lesions on magnetic resonance images (p-values ranging between 0.02 and 0.05). Over 2 years, the annual exacerbation rate was 0.90 in placebo-treated patients versus 0.61 in interferon beta-1a-treated patients. There were no major adverse events related to treatment. Interferon beta-1a had a significant beneficial impact in relapsing multiple sclerosis patients by reducing the accumulation of permanent physical disability, exacerbation frequency, and disease activity measured by gadolinium-enhanced lesions on brain magnetic resonance images. This treatment may alter the fundamental course of relapsing multiple sclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ana.410390304 | DOI Listing |
RMD Open
January 2025
Department of Neuromuscular Diseases, University College London, London, UK
Objective: To identify the best evidence on the efficacy of treatment interventions for inclusion body myositis (IBM) and to describe their safety.
Methods: Systematic review of randomised controlled trials (RCTs) of pharmacological treatments of adults with IBM, conducted according to the Cochrane Handbook, updating a previous Cochrane review. The search strategy was run on Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE and EMBASE, ClinicalTrials.
Mult Scler Relat Disord
January 2025
Department of Nutrition and Drug Research, Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Skawińska Street 8, 31-066 Krakow, Poland. Electronic address:
Objective: This study aimed to review the efficacy and safety profile of disease-modifying therapies (DMTs) in patients with relapsing pediatric-onset multiple sclerosis (POMS).
Methods: A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Published randomized controlled trials (RCTs), nonrandomized studies with a control group, large single-arm studies, and ongoing (unpublished) studies investigating the use of approved and unapproved DMTs in POMS were included.
J Clin Med
December 2024
Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Radiotherapy (RT) remains crucial in treating both primary and metastatic central nervous system cancer. Despite advancements in modern techniques that mitigate some toxic adverse effects, magnetic resonance imaging (MRI) scans still reveal a wide range of radiation-induced changes. Radiation can adversely affect neuroglial cells and their precursors, potentially triggering a demyelinating pattern similar to multiple sclerosis (MS).
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2024
Keio University School of Medicine, Division of Pulmonary Medicine, Department of Medicine, Tokyo, Japan.
Airway epithelial cells (AECs) play an essential role in the immune response during bacterial pneumonia. Secreted and transmembrane 1a (Sectm1a) is specifically expressed in AECs during early (SP) infection. However, its function remains largely unexplored.
View Article and Find Full Text PDFClin Pharmacol Ther
February 2025
Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, Texas, USA.
In patients with multiple sclerosis (MS), infections represent a significant concern, particularly given the immunomodulatory effects of disease-modifying agents (DMAs). High-efficacy DMAs (heDMAs) play a pivotal role in delaying MS progression, yet their use also raises concerns regarding the risk of infection. This study aimed to compare the infection risk with the use of heDMA and moderate-efficacy disease-modifying agents (meDMAs) in MS patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!