The presence of BCL-2 gene rearrangement has been detected also in cellular populations lacking the t(14;18) chromosomal translocation, such as B-lineage acute lymphoblastic leukemia (ALL) cells. It has been reported that overexpression of BCL-2 is related to resistance to glucocorticoid-induced apoptosis. In this study, we aimed to evaluate whether in vitro culture with prednisolone (PDN) could modify the expression of BCL-2 protein. ALL cells from 21 patients were incubated for 72 hr with or without a minimally lethal (IC12) dose of PDN. In vitro culture with PDN did not affect the percentage of positive cells, even though the mean fluorescence index was significantly increased (P = 0.0001), thus indicating a higher level of protein production. These data could suggest a possible mechanism of drug resistance after treatment with PDN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1096-8652(199604)51:4<261::AID-AJH2>3.0.CO;2-U | DOI Listing |
Enzyme Microb Technol
January 2025
Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:
There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.
View Article and Find Full Text PDFBiol Reprod
January 2025
Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
We have demonstrated that the cellular protein M-Sec promotes the transmission of human T-cell leukemia virus type 1 (HTLV-1) in vitro and in vivo. Here, we show how HTLV-1 utilizes M-Sec for its efficient transmission. HTLV-1-infected CD4+ T cells expressed M-Sec at a higher level than uninfected CD4+ T cells.
View Article and Find Full Text PDFNeurotox Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.
View Article and Find Full Text PDFHepatol Int
January 2025
Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan.
Background And Aims: Hepatitis B virus (HBV) is prevalent worldwide and is difficult to eradicate. Current treatment strategies for chronic hepatitis B ultimately seek to achieve functional cure (FC); however, the factors contributing to FC remain unclear. We aimed to investigate the gut microbiota profiles of patients with chronic hepatitis B who achieved FC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!