In chronic renal failure (CRF), plasma concentrations of the products of protein metabolism are increased. Current dietary management is to prescribe a decrease in protein intake. The use of dietary fiber to increase fecal excretion of retained metabolites in CRF may be a beneficial adjunct to a low-protein diet (LPD). Colonic bacteria ferment dietary fiber, providing them with energy for growth and nitrogen incorporation, in turn, increasing nitrogen excretion in feces. Sixteen CRF patients consuming an LPD were randomly assigned to receive a supplement of a highly fermentable fiber, gum arabic (50 g/d), or a placebo (1 g pectin/d) in a prospective, single-blind, crossover design. Fecal bacterial mass and fecal nitrogen content were significantly increased during supplementation with gum arabic compared with the baseline LPD or supplementation with pectin. Serum urea nitrogen was significantly decreased during supplementation with gum arabic compared with the baseline LPD or supplementation with pectin. Nitrogen balance did not change significantly.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/63.3.392DOI Listing

Publication Analysis

Top Keywords

gum arabic
16
supplementation gum
12
fecal nitrogen
8
nitrogen excretion
8
serum urea
8
urea nitrogen
8
chronic renal
8
renal failure
8
patients consuming
8
low-protein diet
8

Similar Publications

Ultrasonic-Assisted Synthesis and Cytocompatibility Assessment of TiO/SiO Nanoparticles-Impregnated Gum Arabic Nanocomposite: Edible Coating of Dates for Shelf-Life Extension.

Polymers (Basel)

January 2025

Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh P.O. Box 2460, Saudi Arabia.

The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO and residue-derived biosilica embedded in gum arabic nanocomposite.

View Article and Find Full Text PDF

Clove (, L.) is a rich source of polyphenols and antioxidants, but its intense flavor, poor solubility, and instability may limit its widespread and efficient use in industrial applications. In a series of laboratory-scale experiments, gum Arabic (GA) and maltodextrin (MD) were used as coating agents in various proportions (ranging from 0MD:100GA to 100MD:0GA) for encapsulation of clove extract using a freeze-drying method.

View Article and Find Full Text PDF

Enhanced storage and gastrointestinal stability of spray-dried whey protein emulsions with chitosan and gum Arabic.

Int J Biol Macromol

January 2025

Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:

Protein-based emulsions are widely utilized for delivering bioactives but suffer from thermodynamic instability, microbial spoilage, and gastrointestinal instability, necessitating enhancement strategies. This study explores the improvement of whey protein isolate (WPI) emulsions through chitosan (CS) coating and spray drying with maltodextrin (MD) or gum Arabic (GA). Canola oil droplets were stabilized with WPI, electrostatic coated with CS, and spray-dried.

View Article and Find Full Text PDF

Goldenberry and purple passion fruit contain bioactive compounds (BCs) that can prevent gastrointestinal cancers; hydrogel beads can protect and control their release in the gastrointestinal tract. This study aimed to develop an encapsulating material for fruit hydrogel beads (FHBs) to increase their bioaccessibility and to assess antiproliferative effects. A blend of goldenberry-purple passion fruit was encapsulated using ionic gelation and electrospraying.

View Article and Find Full Text PDF

Fabrication and saltiness enhancement of salt hollow particles by interface migration.

Food Res Int

February 2025

National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!