Many proteins involved in pre-mRNA processing contain one or more copies of a 70-90-amino-acid alphabeta module called the ribonucleoprotein domain. RNA maturation depends on the specific recognition by ribonucleoproteins of RNA elements within pre-mRNAs and small nuclear RNAs. The human U1A protein binds an RNA hairpin during splicing, and regulates its own expression by binding an internal loop in the 3'-untranslated region of its pre-mRNA, preventing polyadenylation. Here we report the nuclear magnetic resonance structure of the complex between the regulatory element of the U1A 3'-untranslated region (UTR) and the U1A protein RNA-binding domain. Specific intermolecular recognition requires the interaction of the variable loops of the ribonucleoprotein domain with the well-structured helical regions of the RNA. Formation of the complex then orders the flexible RNA single-stranded loop against the protein beta-sheet surface, and reorganizes the carboxy-terminal region of the protein to maximize surface complementarity and functional group recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1038/380646a0DOI Listing

Publication Analysis

Top Keywords

ribonucleoprotein domain
8
u1a protein
8
3'-untranslated region
8
rna
6
specificity ribonucleoprotein
4
ribonucleoprotein interaction
4
interaction determined
4
determined rna
4
rna folding
4
folding complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!