The structure of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) in complex with tRNAGln and ATP has identified a number a sequence-specific protein-tRNA interactions. The contribution to glutamine identity has previously been determined for the nucleotides in tRNAGln. Here, we report the mutational analysis of residues in all three tRNA recognition domains of GlnRS, thus completing a survey of the major sequence-specific contacts between GlnRS and tRNAGln. Specifically, we analyzed the GlnRS determinants involved in recognition of the anticodon which is essential for glutamine identity and in the communication of anticodon recognition to the acceptor binding domain in GlnRS. A combined in vivo and in vitro approach has demonstrated that Arg341, which makes a single sequence-specific hydrogen bond with U35 in the anticodon of tRNAGln, is involved in initial RNA recognition and is an important positive determinant for this base in both cognate and non- cognate tRNA contexts. However, Arg341, as well as Arg402, which interacts with G36 in the anticodon, are negative determinants for non-cognate nucleotides at their respective positions. Analysis of acceptor-anticodon binding double mutants and of a mutation of Glu323 in the loop-strand-helix connectivity subdomain in GlnRS has further implicated this domain in the functional communication of anticodon recognition. The better than expected activity (anticooperativity) of these double mutants has led us to propose an "anticodon-independent" mechanism, in which the removal of certain synthetase interactions with the anticodon eliminates structural constraints, thus allowing the relaxed specificity mutants in the acceptor binding domain ot make more productive interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1996.0128 | DOI Listing |
J Mol Biol
December 2024
School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea. Electronic address:
Aminoacyl-tRNA synthetases (ARSs) are responsible for the ligation of amino acids to their cognate tRNAs. In human, nine ARSs form a multi-tRNA synthetase complex (MSC) with three ARS-interacting multifunctional proteins (AIMPs). Among the components of MSC, arginyl-tRNA synthetase 1 (RARS1) and two AIMPs (AIMP1 and AIMP2) have leucine zipper (LZ) motifs, which they utilize for their assembly in an MSC.
View Article and Find Full Text PDFCell Chem Biol
April 2024
Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth.
View Article and Find Full Text PDFIUBMB Life
August 2024
Chemistry Department, Skidmore College, Saratoga Springs, New York, USA.
The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2024
Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea. Electronic address:
YqeY is a functionally and structurally uncharacterized protein that is ubiquitously expressed in bacteria. To gain structural insights into the function of YqeY, we determined the crystal structures of the Campylobacter jejuni and Vibrio parahaemolyticus YqeY proteins (cjYqeY and vpYqeY, respectively) and analyzed the structural and functional roles of conserved residues via a mutational study. Both cjYqeY and vpYqeY were found to adopt a two-domain structure consisting of an N-terminal four-α-helix domain and a C-terminal three-α-helix domain, with a relatively flexible interdomain orientation.
View Article and Find Full Text PDFF1000Res
October 2023
Biology, Texas A&M University, College Station, TX, 77843, USA.
In , the circadian clock controls rhythmic mRNA translation initiation through regulation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2). Active CPC-3 phosphorylates and inactivates eIF2α, leading to higher phosphorylated eIF2α (P-eIF2α) levels and reduced translation initiation during the subjective day. This daytime activation of CPC-3 is driven by its binding to uncharged tRNA, and uncharged tRNA levels peak during the day under control of the circadian clock.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!