Limited proteolysis of protein kinase C (PKC) by calcium-activated proteolysis cleaves the regulatory and catalytic subunits of PKC, generating a free, constitutively activated kinase ("PKM") that, unlike the intact parent enzyme, is not calcium-dependent, and is not restricted to the plasma membrane. These latter properties leave open the possibility that PKM may have access to, and may therefore phosphorylate, substrates normally unavailable to intact PKC. We examined the potential involvement of such aberrant phosphorylation in certain aspects of the neurodegeneration accompanying Alzheimer's disease by microinjecting PKC and PKM, along with a rhodamine-conjugated dextran tracer, into undifferentiated NB2a/d1 mouse neuroblastoma cells. After 4 hr, cultures were fixed and processed for immunofluorescence with monoclonal antibodies (PHF-1, ALZ-50, Tau-1, AT8) directed against tau in various phosphorylation states followed by fluorescein-conjugated secondary antibodies. Microinjected cells were localized via co-injected rhodamine-conjugated dextran tracer under rhodamine illumination, after which antibody immunoreactivity was examined under fluorescein illumination. Microdensitometric analyses indicated that microinjection of PKC did not increase basal immunofluorescent intensities of the antibodies; by contrast, microinjection of PKM induced three- and twofold increases in PHF-1 and ALZ-50 levels, respectively. By contrast, no significant alteration was observed in AT8 and Tau-1 immunofluorescence following either PKC or PKM microinjection. Whereas undifferentiated NB2a/d1 cells typically elaborate short, filopodia-like neurites, phase-contrast microscopy revealed the absence of filopodia or neurites on PKM-injected cells, while a similar percentage of PKC-injected cells. Cell-free analyses confirmed the ability of PKC, in the presence of necessary co-factors, and PKM to increase PHF-1 and ALZ-50 immunoreactivity; no change was observed in AT8 or Tau-1 immunoreactivity. These findings underscore the possibility that an abnormal amplification in limited PKC proteolysis to generate PKM could, under certain pathological conditions, contribute to neuronal degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.490420507DOI Listing

Publication Analysis

Top Keywords

phf-1 alz-50
12
protein kinase
8
catalytic subunits
8
pkc
8
pkc pkm
8
rhodamine-conjugated dextran
8
dextran tracer
8
undifferentiated nb2a/d1
8
observed at8
8
at8 tau-1
8

Similar Publications

Yeast surface display of full-length human microtubule-associated protein tau.

Biotechnol Prog

January 2020

Department of Chemical and Biomolecular Engineering, Institute for Systems Genomics, CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT.

Microtubule-associated protein tau is an intrinsically disordered, highly soluble protein found primarily in neurons. Under normal conditions, tau regulates the stability of axonal microtubules and intracellular vesicle transport. However, in patients of neurodegeneration such as Alzheimer's disease (AD), tau forms neurofibrillary deposits, which correlates well with the disease progression.

View Article and Find Full Text PDF

Hyperphosphorylated tau aggregates in the cortex and hippocampus of transgenic mice with mutant human FTDP-17 Tau and lacking the PARK2 gene.

Acta Neuropathol

February 2009

Laboratory of Neurology, Fundacion Jimenez Diaz-Capio/Clinica Ntra. Sra. Concepción, Avda Reyes Catolicos 2, 28040 Madrid, Spain.

Mutations in the PARK2 gene encoding parkin cause autosomal recessive juvenile parkinsonism, but have also been found in patients diagnosed with certain tauopathies. Conversely, mutations in the MAPT gene encoding tau are present in some types of parkinsonism. In order to investigate the possible relationship between these two proteins, we generated a double mutant mouse that is deficient in PARK2 and that over-expresses the hTauVLW transgene, a mutant form of the tau protein present in FTDP-17.

View Article and Find Full Text PDF

Cortical neurons are vulnerable to ischemic insult, which may cause cytoskeletal changes and neurodegeneration. Tau is a microtubule-associated protein expressed in neuronal and glial cells. We examined the phosphorylation status of tau protein in the gerbil brain cortex during 5 min ischemia induced by bilateral common carotid artery occlusion followed by reperfusion for 20 min to 7 days.

View Article and Find Full Text PDF

Thorn-shaped astrocytes (TSA) are glial fibrillary tangles that contain abnormally phosphorylated and aggregated microtubule-associated tau protein. The present study examines the prevalence of TSA in the human medial temporal lobe of 100 autopsy brains aged 42-97 years (mean age: 65 years). Serial brain sections were cut at 100 microm and stained using phosphorylation-dependent anti-tau antibodies (AT8, PHF-1, TG3, Alz-50) and silver staining methods for neurofibrillary changes and beta-amyloid deposits.

View Article and Find Full Text PDF

Neurofibrillary tangles (NFT), one of the histopathological hallmarks of Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), and Pick bodies in Pick's disease (PiD) are composed of microtubule-associated protein tau, which is the product of alternative splicing of a gene on chromosome 17. Alternative expression of exon 10 leads to formation of three- or four-repeat tau isoforms. To study the differential expression of exon 10, we performed double-labeling immunohistochemistry of the hippocampal formation in nine AD, four PSP and three PiD cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!