RNA-mediated virus resistance has been observed in transgenic plants at varying frequencies, suggesting that a nuclear requirement or other pre-condition must be met. This study was undertaken to characterize genetically transgenes that confer a highly resistant state to infection by tobacco etch virus (TEV). Transgenic tobacco line 2RC-6.13, expressing an untranslatable mRNA containing the TEV coat protein open reading frame, had three distinct transgene integration events that segregated as two linkage groups. A genetic series of plants that contained zero, one, two, or all three transgene inserts in both homozygous and heterozygous conditions was produced and examined. Genetic and biochemical data suggested that RNA-mediated virus resistance is a multigenic trait in line 2RC-6.13; three or more transgenes were necessary to establish the highly resistant state. One or two transgene copies resulted in an inducible form of resistance (i.e., recovery). Transcription rates and steady state RNA levels of the transgene-derived transcript present in different members of the genetic series supported a post-transcriptional RNA degradation process as the underlying mechanism for transgene transcript reduction and virus resistance. This degradation process appeared to initiate via cleavage of specific sites within the target RNA sequence, as determined by RNA get blot and primer extension analyses of transgene-derived mRNA from various transgenic plant lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC161084 | PMC |
http://dx.doi.org/10.1105/tpc.8.1.95 | DOI Listing |
mSystems
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families.
View Article and Find Full Text PDFFront Immunol
January 2025
Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France.
CAR-T cell therapy has revolutionized immunotherapy but its allogeneic application, using various strategies, faces significant challenges including graft-versus-host disease and graft rejection. Recent advances using Virus Specific T cells to generate CAR-VST have demonstrated potential for enhanced persistence and antitumor efficacy, positioning CAR-VSTs as a promising alternative to conventional CAR-T cells in an allogeneic setting. This review provides a comprehensive overview of CAR-VST development, emphasizing strategies to mitigate immunogenicity, such as using a specialized TCR, and approaches to improve therapeutic persistence against host immune responses.
View Article and Find Full Text PDFHortic Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China.
Glycerophosphodiester phosphodiesterase 1 (GDPD1) plays an important function in the abiotic stress responses and participates in the accumulation of sn-glycerol-3-phosphate (G3P) in plants, which is key to plant systemic acquired resistance (SAR). However, the role of GDPD1 in plant responses to biotic stress remains poorly understood. This study characterized the antivirus function of the gene (designated as ) from Eureka lemon.
View Article and Find Full Text PDFFront Public Health
January 2025
College of Life Sciences, University of Ningxia, Yinchuan, Yinchuan, Ningxia, China.
Background: Over the past decade, sexual transmission has become a dominant source of new HIV-1 infection in China. However, very few studies have been conducted to characterize the two sexual transmissions, homosexual and heterosexual transmission. This study was conducted to better understand the relationship between genotypes, drug resistance, and molecular transmission networks in two groups of sexually transmitted HIV-1 in Ningxia, China.
View Article and Find Full Text PDFVirology
January 2025
School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom. Electronic address:
This mini-review examines the strategy of combining viral protein sequence conservation with drug-binding potential to identify novel antiviral targets, focusing on internal proteins of influenza A and other RNA viruses. The importance of combating viral genetic variability and reducing the likelihood of resistance development is emphasised in the context of sequence redundancy in viral datasets. It covers recent structural and functional updates, as well as drug targeting efforts for three internal influenza A viral proteins: Basic Polymerase 2, Nuclear Export Protein, and Nucleoprotein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!