Eukaryotic initiation factor 5A(eIF-5A) is a cellular cofactor require d for the function of the human immunodeficiency virus type-1 (HIV-1) Rev trans-activator protein. The majority of a set of eIF-5A mutants did not support growth of yeast cells having an inactivated genomic copy of eIF-5A, indicating that the introduced mutation eliminated eIF-5A activity. Two nonfunctional mutants, eIF-5AM13 and eIF-5AM14, retained their binding capacity for the HIV-1 Rev response element:Rev complex. Both mutants were constitutively expressed in human T cells. When these T cells were infected with replication-competent HIV-1, virus replication was inhibited. The eIF-5AM13 and eIF5AM14 proteins blocked Rev trans-activation and Rev-mediated nuclear export.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.271.5257.1858DOI Listing

Publication Analysis

Top Keywords

hiv-1 rev
8
inhibition hiv-1
4
hiv-1 replication
4
replication lymphocytes
4
mutants
4
lymphocytes mutants
4
rev
4
mutants rev
4
rev cofactor
4
eif-5a
4

Similar Publications

30 years of HIV therapy: Current and future antiviral drug targets.

Virology

December 2024

Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA. Electronic address:

Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation.

View Article and Find Full Text PDF

Determining structures of RNA conformers using AFM and deep neural networks.

Nature

December 2024

Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.

Much of the human genome is transcribed into RNAs, many of which contain structural elements that are important for their function. Such RNA molecules-including those that are structured and well-folded-are conformationally heterogeneous and flexible, which is a prerequisite for function, but this limits the applicability of methods such as NMR, crystallography and cryo-electron microscopy for structure elucidation. Moreover, owing to the lack of a large RNA structure database, and no clear correlation between sequence and structure, approaches such as AlphaFold for protein structure prediction do not apply to RNA.

View Article and Find Full Text PDF

Despite effective treatment, Human immunodeficiency virus (HIV) persists in optimally treated people as a transcriptionally silent provirus. Latently infected cells evade the immune system and the harmful effects of the virus, thereby creating a long-lasting reservoir of HIV. To gain a deeper insight into the molecular mechanisms of HIV latency establishment, we constructed a series of HIV-1 fluorescent reporter viruses that distinguish active versus latent infection.

View Article and Find Full Text PDF

[Comparison of two methodologies for HIV confirmation in a Blood Bank].

Rev Med Inst Mex Seguro Soc

February 2024

Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas. Ciudad de México, México.

Article Synopsis
  • Different confirmatory methods for detecting HIV, like Western blot and recombinant immunoassay, are approved by standard 253.
  • The study aimed to compare the effectiveness of the GeniusTM recombinant immunoassay against the Western blot tests in analyzing HIV-reactive blood samples.
  • Results showed strong agreement between the two methods, with GeniusTM offering practical advantages, making both reliable options for confirming HIV tests in blood donations.
View Article and Find Full Text PDF

While various methods exist for examining and visualizing the structures of RNA molecules, dimethyl sulfate-mutational profiling and sequencing (DMS-MaPseq) stands out for its simplicity and versatility. This technique has been proven effective for studying RNA structures both in vitro and in complex biological settings. We present an updated protocol of DMS-MaPseq, as well as methodology that enables it to be used for detection of antisense oligonucleotides (ASOs) binding to RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!