K+ channel antisense oligodeoxynucleotides inhibit cytokine-induced expansion of human hemopoietic progenitors.

Pflugers Arch

Bruce Rappaport Faculty of Medicine, Dept. Biophysics and Physiology and Haemopoiesis Unit,Technion, Haifa, Israel.

Published: February 1996

Primitive human hemopoietic progenitor cells identified by surface membrane markers CD33-CD34+ are capable of expansion into lineage-restricted precursors following in vitro stimulation by hemopoietic regulators such as stem cell factor (SCF) and interleukin-3 (IL-3). In search of ionic currents involved in cytokine-induced progenitor cell growth and differentiation, human umbilical cord blood CD33-CD34+ cells were subjected to perforated patch-clamp recordings following overnight incubation with SCF and/or IL-3. An inward rectifying potassium channel (Kir) was found in 33% of control unstimulated cells, in 34% of cells incubated with IL-3, in 31% of cells incubated with SCF and in 75% of cells incubated with IL-3 plus SCF. Kir activity increased with elevation of extracellular potassium and was blocked by extracellular Cs+ or Ba2+ Antisense oligodeoxynucleotides directed against Kir blocked both mRNA and functional expression of Kir channels. Kir antisense also inhibited the in vitro expansion of cytokine-stimulated CD33-CD34+ cells into erythroid (BFU-E) and myeloid (GM-CFU) progenitors in 7-day suspension cultures. Extracellular Cs+ or Ba2+ induced a similar degree of inhibition (40-60%) of progenitor cell generation. These findings strongly suggest an essential role for Kir in the process of cytokine-induced primitive progenitor cell growth and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02191913DOI Listing

Publication Analysis

Top Keywords

progenitor cell
12
cells incubated
12
antisense oligodeoxynucleotides
8
human hemopoietic
8
cell growth
8
growth differentiation
8
cd33-cd34+ cells
8
incubated il-3
8
extracellular cs+
8
cs+ ba2+
8

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!