A new non-linear mathematical model was constructed in order to perform in vivo quantification of the RES phagocytic function. This method is based on the same technical facilities as used for the routine liver-spleen scintigraphy with radiocolloids [1, 2]. But kinetic modeling of dynamic Tc-99m-sulfur colloid data produced estimations of the functional RE-parameters: the clearance rate of the colloidal particles, the rate of phagocytosis, and the RES functional volume, which can not be obtained by classical approaches. This non-linear model was designed on the basis of the principal characteristics of particulate material interaction with macrophages (attachment, phagocytosis, digestion) [3, 4, 5]. The theoretically examined behavior of this in vivo mathematical model corresponds with the experimental behavior of the RES. The mathematical expression of the dynamics is the system of non-linear differential equations with constant coefficients that have no analytical solution. Fitting of the normalized heart blood time-activity curve was obtained to identify the unknown model parameters via non-linear regression. For this purpose general interactive PASCAL procedure IDPAR for a PDP-11/34 computer was used (an IBM PC version is also available). Two to three iterations were needed to estimate the set of unknown parameters for any patient study (1-1.5 min). A very good fitting was obtained between experimental and model curves in every case of different pathologies (error of the approximation is about 2-3%). Studies were performed using an in vivo bolus injection of 3.6 mg/80 kg commercially available colloid KOREN labeled with 3m-Ci 99m-Tc (analog of TCK-1). Our method was used to determine the RES functional parameters for patient groups with different levels of the RES dysfunction. Obtained results illustrate the possibilities of our technique to quantitatively estimate not only great pathology (portal cirrhosis), but also small changes of the RE-function (case of hyperlipidemia and ulcer gaster). In all patient groups marked changes of Tc-99m-sulfur colloid turnover were observed. In general, tracer clearance from the circulation was decreased, and the rate of phagocytosis and the RES volume were diminished compared with controls. The effect of a reduction of phagocytosis increases when the RES dysfunction becomes stronger. It can be shown that a non-parametric Wilcoxon-Mann-Whitney test gives a significant difference (P95%) for these patient groups. Further, we represent the possibility of using the model for monitoring changes of the RES-function parameters during and after therapy. The quantitative test of the RES function can significantly enhance the diagnosis and management of different diseases. Serial colloidal studies may document changes in the RES-function for the tumors, cirrhosis, hyperlipidemia, reticulosis, hepatitis, thrombosis, infection, AIDS, burn injury, shock and trauma patients. The technique may be useful for the different RES investigations with laboratory animals. Created computer software can be used as a tool for kinetic models, simulation, and unknown parameters identification.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mathematical model
12
patient groups
12
res
10
non-linear mathematical
8
res phagocytic
8
phagocytic function
8
tc-99m-sulfur colloid
8
rate phagocytosis
8
phagocytosis res
8
res functional
8

Similar Publications

Introduction: Folate receptors (FR) have been considered a convenient target for different radiopharmaceuticals in recent years. Multifarious Ga-labeled folate conjugates have been proposed as promising agents for the PET imaging of FR-overexpressing malignant neoplasms. In addition, radiolabeled folate-based conjugates can be effective for imaging non-tumor pathological foci characterized by a pronounced cluster of activated macrophages.

View Article and Find Full Text PDF

The optimal color space enables advantageous smartphone-based colorimetric sensing.

Biosens Bioelectron

December 2024

Biophotonic Nanosensors Laboratory, Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, 76230, Mexico. Electronic address:

Smartphone-based colorimetric (bio)sensing is a promising alternative to conventional detection equipment for on-site testing, but it is often limited by sensitivity to lighting conditions. These issues are usually avoided using housings with fixed light sources, increasing the cost and complexity of the on-site test, where simplicity, portability, and affordability are a priority. In this study, we demonstrate that careful optimization of color space can significantly boost the performance of smartphone-based colorimetric sensing, enabling housing-free, illumination-invariant detection.

View Article and Find Full Text PDF

Ongoing challenges in the provision of care, driven by growing care complexity and nursing shortages, prompt us to reconsider the basis for efficient division of nursing labour. In organising nursing work, traditionally the focus has been on identifying nursing tasks that can be delegated to other less expensive and less highly educated staff, in order to make best use of scarce resources. We argue that nursing care activities are connected and intertwined.

View Article and Find Full Text PDF

The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.

View Article and Find Full Text PDF

A position coding model that accounts for the effects of event boundaries on temporal order memory.

Cogn Psychol

January 2025

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China; Chinese Institute for Brain Research, China. Electronic address:

Episodic memories, particularly temporal order memory, are influenced by event boundaries. Although numerous theoretical and computational models have been developed to explain this phenomenon, creating a model that can explain a wide range of behavioral data and is supported by neural evidence remains a significant challenge. This study presented a new model, grounded in ample evidence of position coding, to account for the impact of event boundaries on temporal order memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!