Cumulation NOx in foodstuffs and raw materials of animal origin.

Arch Vet Pol

Department of Food Hygiene and Technology, University of Veterinary Medicine, Kosice, Slovak Republic.

Published: April 1996

In recent years quality of all raw materials processed by agricultural-food industry complex has been influenced by penetration of contaminating hazardous substances into the food chain as a result of high chemization, as well as by the exhalation fall-outs of industrial enterprises. In our study we followed the cumulation of nitrates and nitrites in food and raw materials of animal origin in the exposed industrial area of East Slovak Ironworks in Kosice. Determined were the residual levels of nitrates and nitrites in meat and organs of slaughterhouse cattle, milk and water from individual agricultural enterprises. Consistent control of the content of these hazardous substances in foodstuffs of vegetable and animal origin, water, soil and air represents a considerable contribution from viewpoint of consumer protection.

Download full-text PDF

Source

Publication Analysis

Top Keywords

raw materials
12
animal origin
12
materials animal
8
hazardous substances
8
nitrates nitrites
8
cumulation nox
4
nox foodstuffs
4
foodstuffs raw
4
origin years
4
years quality
4

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Metabolic engineering for single-cell protein production from renewable feedstocks and its applications.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.

Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.

View Article and Find Full Text PDF

In oil-rich regions, the increasing risk of oil spills on soil is largely attributed to intensified extraction and transportation activities. This situation necessitates a focus on the short-term and long-term strength of contaminated soils. While existing literature primarily evaluates the oil-contaminated soils over short-term periods, typically up to 28 days, it is essential to investigate their long-term performance, extending the evaluation period to 365 days.

View Article and Find Full Text PDF

Introduction: Owing to its high prevalence, colossal potential of chemoresistance, metastasis, and relapse, breast cancer (BC) is the second leading cause of cancer-related fatalities in women. Several treatments (eg, chemotherapy, surgery, radiations, hormonal therapy, etc.) are conventionally prescribed for the treatment of BC; however, these are associated with serious systemic aftermaths.

View Article and Find Full Text PDF

Targeted Conversion of Biomass into Primary Diamines via Carbon Shell-Confined Cobalt Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China.

Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!