The organisation of the URA1 gene of Schizosaccharomyces pombe was determined from the entire cDNA cloned by the transformation of an ATCase-deficient strain of Saccharomyces cerevisiae. The URA1 gene encodes the bifunctional protein GLNase/CPSase-ATCase which catalyses the first two steps of the pyrimidine biosynthesis pathway. The complete nucleotide sequence of the URA1 cDNA was elucidated and the deduced amino-acid sequence was used to define four domains in the protein; three functional domains, corresponding to GLNase (glutamine amidotransferase), CPSase (carbamoylphosphate synthetase) and ATCase (aspartate transcarbamoylase) activities, and one cryptic DHOase (dihydroorotase) domain. Genetic investigations confirmed that both GLNase/CPSase and ATCase activities are carried out by the same polypeptide. They are also both feedback-inhibited by UTP (uridine triphosphate). Its organization and regulation indicate that the S. pombe URA1 gene product appears very similar to the S. cerevisiae URA2 gene product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00315780 | DOI Listing |
Antonie Van Leeuwenhoek
November 2022
Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
Analysis of predicted fungal proteomes revealed a large family of sequences that showed similarity to the Saccharomyces cerevisiae Class-I dihydroorotate dehydrogenase Ura1, which supports synthesis of pyrimidines under aerobic and anaerobic conditions. However, expression of codon-optimised representatives of this gene family, from the ascomycete Alternaria alternata and the basidiomycete Schizophyllum commune, only supported growth of an S. cerevisiae ura1Δ mutant when synthetic media were supplemented with dihydrouracil.
View Article and Find Full Text PDFFungal Biol Biotechnol
October 2021
Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
Background: In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis.
View Article and Find Full Text PDFBraz J Microbiol
December 2020
Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, 76140, Queretaro, Mexico.
The development of an efficient transformation system is essential to enrich the genetic understanding of Trichoderma atroviride. To acquire an additional homologous selectable marker, uracil auxotrophic mutants were generated. First, the pyr4 gene encoding OMP decarboxylase was replaced by the hph marker gene, encoding a hygromycin phosphotransferase.
View Article and Find Full Text PDFmSphere
November 2016
Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, New York, USA.
The use of amphotericin B (AmB) in conjunction with 5-fluorocytosine (5-FC) is known to be the optimal therapy for treating cryptococcosis, but the mechanism by which 5-FC synergizes with AmB is unknown. In this study, we generated a Δ mutant lacking dihydroorotate dehydrogenase (DHODH), which demonstrated temperature-sensitive growth due to a defect in cell integrity and sensitivity to cell wall-damaging agents. In addition, sensitivity to AmB was greatly increased.
View Article and Find Full Text PDFPLoS One
January 2014
Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan.
Polypeptone is widely excluded from Schizosaccharomyces pombe growth medium. However, the reasons why polypeptone should be avoided have not been documented. Polypeptone dramatically induced cell lysis in the ura4 deletion mutant when cells approached the stationary growth phase, and this phenotype was suppressed by supplementation of uracil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!