The ability of antibodies to specifically select and stabilize through binding one or more isomers of highly dynamic ligands remains a relatively unexplored immunochemical problem. The experimental strategy employed in this study was to elicit homogeneous antibodies to polyaromatic fluorescein which exists in one isomeric form. The binding properties of a monoclonal rat antifluorescein antibody specific to a given isomer were quantitatively studied to determine the capacity to bind dynamic analogues of fluorescein which exists in multiple isomers. To generate monoclonal anti-fluorescein antibodies that reacted with specific dynamic analogues of fluorescein possessing unconjugated aromatic ring systems, immune spleenocytes from Lou/M rats immunized with FITC(I)-KLH were fused with Balb/c SP2/0-Ag14 murine myeloma cells forming rat-mouse hybridomas. Cell line P2A12-1-C8 was selected for further characterization from the original 23 stable rat hybrids, since it produced a monoclonal antibody with a binding affinity 2.0 x 10(10)/M for fluorescein based on dissociation rate measurements. P2A12-1-C8 exhibited significant reactivity with HPF and phenol red, which are dynamic structural analogues of the homologous fluorescein ligand. No reactivity was demonstrated with phenolphthalein, which based on relative chemical structures was expected to be more reactive than phenol red. Computer-based molecular modeling and energy minimization studies of fluorescein, HPF, phenol red, and phenolphthalein showed that in terms of the most energetically favorable orientation of the three aromatic rings, phenol red more closely simulated fluorescein than phenolphthalein. The results were analyzed in terms of the mechanisms of dynamic ligand stabilization and binding involving accommodation of specific ligand isomers by energetically permissible conformational states exhibited by an antibody active site. Thus, antibody reactivity of an anti-fluorescein antibody with phenol red and phenolphthalein was dictated more by ligand dynamics and aromatic orientation than by chemical structure similarities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmr.300080404 | DOI Listing |
Plants (Basel)
December 2024
Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico.
Green mold caused by is a major post-harvest disease in citrus fruits. Therefore, the search for sustainable and low-environmental-impact alternatives for the management of these fungi is of utmost importance. L.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia.
The use of sewage sludge activated carbon (thickened samples ACS1 and non-thickened samples ACS2) in a variety of applications and simple environmentally friendly production techniques are attracting more and more attention. We offer here a novel environmentally friendly method based on the green synthesis of activated carbons (ACS1/ACS2) using sewage sludge (SS). These activated carbons are then used to effectively remove the water-based reactive dye phenol red (PR).
View Article and Find Full Text PDFFront Microbiol
December 2024
Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia.
Introduction: Lactic acid bacteria are prized for their probiotic benefits and gut health improvements. This study assessed five LAB isolates from Neera, with RAMULAB51 (, GenBank ON171686.1) standing out for its high hydrophobicity, auto-aggregation, antimicrobial activity, and enzyme inhibition.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey.
Mercury is one of the most hazardous heavy metals and is capable of biomagnification, thereby posing severe risks to ecosystems and human health. Therefore, selective, sensitive, and rapid detection of Hg in a wide range of samples is essential. Herein, we report the synthesis of a new 2-(benzo[d]thiazol-2-yl) phenol-based fluorescent probe (PyS) and its potential as a fluorescent probe for detecting Hg ions in various real samples such as rice, garlic, shrimp, and root samples.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
NLRP3 inflammasome inhibitor is a highly attractive drug target for the treatment of various inflammatory diseases. Here, we report the discovery of pyridazine derivatives as a new class of scaffold for NLRP3 inflammasome inhibitors. We optimized HTS hit 2a to improve both in vitro IL-1β inhibitory activity and the mean photo effect (MPE) value in the in vitro 3T3 neutral red uptake (NRU) phototoxicity test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!