Monoclonal antibody to fetal haemoglobin (alpha 2 gamma 2) has been proposed as a fetal-specific reagent. We developed an intracellular staining protocol that combines fluorescein isothiocyanate or phycoerythrin conjugated anti-gamma with the DNA binding dye Hoechst 33342 to identify and flow sort fetal erythroblasts from maternal blood. Our preliminary observations on anti-gamma-positive cells sorted from four different pregnant women are described here, using fluorescence in situ hybridization (FISH) with chromosome-specific probes to identify fetal cells. Our data demonstrate that far fewer candidate fetal cells are sorted with this protocol than by current cell surface staining methods that employ the monoclonal antibody CD71. This results in increased fetal cell sorting purities. With this protocol, standard FISH techniques require modification due to the rigorous fixation with 4 per cent paraformaldehyde. Our initial data indicate the promise of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.1970151004DOI Listing

Publication Analysis

Top Keywords

fetal erythroblasts
8
preliminary observations
8
monoclonal antibody
8
cells sorted
8
fetal cells
8
fetal
6
flow sorting
4
sorting fetal
4
erythroblasts intracytoplasmic
4
intracytoplasmic anti-fetal
4

Similar Publications

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

Purpose: Fetal nucleated red blood cells (fNRBCs) in the peripheral blood of pregnant women contain comprehensive fetal genetic information, making them an ideal target for non-invasive prenatal diagnosis (NIPD). However, challenges in identifying, enriching, and detecting fNRBCs limit their diagnostic potential.

Methods: To overcome these obstacles, we developed a novel biomimetic chip, replicating the micro-nano structure of red rose petals on polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Background: Erythroid cells contribute to embryonic organ development and adult tissue repair supplying oxygen to tissues. During mouse development, the primitive erythroid cells produced in the extraembryonic blood islands of the yolk sac begin to circulate as immature and nucleated erythroblasts with the onset of cardiac contractions around embryonic day 9.5 (E9.

View Article and Find Full Text PDF

Reduced GATA1 levels are associated with ineffective erythropoiesis in sickle cell anemia.

Haematologica

December 2024

Red Cell Haematology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London.

Ineffective erythropoiesis (IE) is defined as the abnormal differentiation and excessive destruction of erythroblasts in the marrow, accompanied by an expanded progenitor compartment and relative reduction in the production of reticulocytes. It is a defining feature of many types of anemia, including beta-thalassemia. GATA1 is an essential transcription factor for erythroid differentiation, known to be implicated in hematological conditions presenting with IE, including beta-thalassemia and congenital dyserythropoietic anemia.

View Article and Find Full Text PDF

GLTSCR1, a protein encoded by the Bicra gene, is a defining subunit of the SWI/SNF (also called mammalian BAF) chromatin remodeling subcomplex called GBAF/ncBAF. To determine the role of GLTSCR1 during mouse development, we generated a Bicra germline knockout mouse using CRISPR/Cas9. Mice with homozygous loss of Bicra were born at Mendelian ratios but were small, pale and died within 24 hours after birth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!