Introduction: Surface topography, as opposed to dioptric topography, defines the corneal surface in simple terms without assumptions. Accordingly, it is important to know how well surface topography can be measured with current videokeratometric machines.
Purpose: The purpose of this paper is to quantify the accuracy with which the TMS-1 Corneal Modeling System can measure the surface topography of calibrated spherical, elliptical, and bicurve surfaces.
Methods: The Computed Anatomy TMS-1 videokeratometer was used to measure three spherical, three elliptical, and two bicurve surfaces with known characteristics. Surface characteristics were either back-calculated from the dioptric files or directly obtained from the TMS-1 elevation file for each of 6400 points (256 points in each of 25 rings). The accuracy with which each method determined the true surface was quantified by calculating the root mean squared error (RMSE) of the 6400 measured surface elevations from the known surface elevation at each sampling point.
Results: (1) For spherical and elliptical surfaces, back-calculation of surface elevation from the dioptric file can be made with RMSE of 5 mu or less. (2) For spheres but not elliptical surfaces the TMS-1 elevation file defines the surface with RMSE 5 mu or less. (3) The surface area measured by placido-based videokeratometers varies with surface curvature. (4) RMSE in measured surface elevation increase as the distance from the videokeratometric axis increases. (5) For bicurves, the dioptric maps are smoothed by the TMS-1 over abrupt transitions and for large transitions never recover. Additionally, our back-calculation methods further smooth abrupt transitions, making the RMSE of the bicurve surface that is back-calculated from the dioptric file larger than the RMSE of the surface generated from the TMS-1 elevation file.
Conclusions: Surface elevations can be back-calculated from dioptric files with RMSE of 5 microns or less for spheres and elliptical surfaces as long as there are no areas of abrupt transition. If areas of abrupt transition exist, the TMS-1 elevation file provides more accurate surface profile data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00006324-199511000-00003 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Research and Development Center for Wide Bandgap Semiconductors, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Wide bandgap semiconductor AlGaN alloys have been identified as key materials to fabricate solar-blind ultraviolet photodetectors (SBUV PDs). Herein, a self-driven SBUV polarization-sensitive PD (PSPD) based on semipolar (112̅2)-oriented AlGaN films is reported. Using the flow-rate modulation epitaxy method, the full widths at half maximum (FWHMs) for the obtained (112̅2) AlGaN along [112̅3̅] and [11̅00] rocking curves are 0.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, 14004 Cordoba, Spain.
Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
Faculty of Dentistry, Department of Periodontics, Complutense University of Madrid, Madrid, Spain.
Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam 31962, Republic of Korea.
MXenes are a class of 2D transition metal carbides and nitrides (MXT) that have attracted significant interest owing to their remarkable potential in various fields. The unique combination of their excellent electromagnetic, optical, mechanical, and physical properties have extended their applications to the biological realm as well. In particular, their ultra-thin layered structure holds specific promise for diverse biomedical applications.
View Article and Find Full Text PDFJ Biomol Struct Dyn
March 2025
Department of Chemistry, Jamia Millia Islamia, New Delhi, India.
1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,H and C-NMR, UV-visible spectroscopy, and mass spectrometry. antifungal activity was performed against , and and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!