Effect of endothelin antagonists with or without BQ 788 on ET-1 responses in pithed rats.

J Cardiovasc Pharmacol

Department of Vascular Biology, Rhône-Poulenc Rorer, Dagenham Research Centre, Essex, England.

Published: March 1996

The overall effects of endothelin-1 (ET-1) on blood pressure are caused by a composite activation of constrictor ETA and ETB receptors and dilator ETB receptors. Therefore, it is difficult to accurately compare the ETA activity of selective ETA receptor antagonists (BQ 123 and BMS 182874) with mixed ETA/ETB antagonists (SB 209670 and bosentan) on the cumulative dose-response curve to ET-1. The development of a selective ETB antagonist (BQ 788), which inhibits both the dilator and constrictor ETB receptors, offered the opportunity to investigate the role of ETB receptors in the response to exogenous ET-1 in the pithed rat. BQ 788 (3 mg/kg) resulted in an eightfold leftward shift in the ET-1 dose-response curve, suggesting a significant involvement of ETB dilator receptors. In the absence or presence of BQ 788, each ET antagonist evoked a rightward shift from vehicle. With the exception of BMS 182874, BQ 788 increased the magnitude of the shifts. Furthermore, the profile of the shifts changed from nonparallel to parallel in the presence of BQ 788. The inclusion of BQ 788 also altered the rank order of the ET antagonists tested. The results presented describe an in vivo system that accurately characterizes the ETA activity of ET antagonists.

Download full-text PDF

Source

Publication Analysis

Top Keywords

etb receptors
16
eta activity
8
bms 182874
8
dose-response curve
8
presence 788
8
0
7
etb
6
et-1
5
receptors
5
endothelin antagonists
4

Similar Publications

Advances in the therapeutic potentials of ligands of the apelin receptor APJ.

Eur J Pharmacol

January 2025

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands. Electronic address:

Angiotensin II protein J receptor, APJ, is a type A G protein coupled receptor. Endogenous apelin and elabela peptides stimulate APJ via distinct signalling profiles. A complex signalling map of elabela-stimulated APJ was published in 2022.

View Article and Find Full Text PDF

Targeting the activated allosteric conformation of the endothelin receptor B in melanoma with an antibody-drug conjugate: mechanisms and therapeutic efficacy.

BJC Rep

January 2025

Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire et Innovation Thérapeutique (LENIT), Gif-sur-Yvette, France.

Background: Endothelin 1 receptors are one of the drivers of tumor progression in many cancers. Inhibition of their signaling pathways with antagonist drugs has been the subject of numerous clinical trials, but the results have not met expectations probably due to the high endothelin concentrations in the tumor microenvironment and their unusually high affinity for their receptors.

Methods: We previously reported the rendomab B49 antibody (RB49) exhibiting a preferential affinity for the activated conformation of human endothelin B receptor (ET), not displaced by high endothelin levels, and without any pharmacological properties that could inhibit the division of melanoma cells.

View Article and Find Full Text PDF

Microglial cell proliferation is regulated, in part, by reactive astrocyte ETB signaling after ischemic stroke.

Exp Neurol

March 2025

Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA. Electronic address:

Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETB) signaling.

View Article and Find Full Text PDF

Sodium valproate reverses aortic hypercontractility in acute myocardial infarction in rabbits.

Eur J Pharmacol

February 2025

Department of Physiology, School of Medicine, University of Valencia, Spain; Institute of Health Research INCLIVA, Valencia, Spain; Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), Madrid, Spain. Electronic address:

Sympathetic nervous system (SNS), endothelin 1 (ET-1) and angiotensin II (Ang II) are involved in the pathophysiology of acute myocardial infarction (AMI). Valproic acid (VPA) is under study for the treatment against AMI due to its beneficial cardiac effects. However, the vascular effects of VPA on the activation of the SNS, ET-1 and Ang II after AMI are not fully studied.

View Article and Find Full Text PDF

Development of a Class A/B Hybrid GPCR System for the Proximity-Assisted Screening of GPCR Ligands.

ACS Chem Biol

January 2025

Department Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg Straße 4, Darmstadt 64287, Germany.

Class A G protein-coupled receptors (GPCRs) are key mediators in numerous signaling pathways and important drug targets for several diseases. A major shortcoming in GPCR ligand screening is the detection limit for weak binding molecules, which is especially critical for poorly druggable GPCRs. Here, we present a proximity-based screening system for class A GPCRs, which adopts the natural two-step activation mechanism of class B GPCRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!